SwinTransTrack:多对象跟踪使用移位窗口变压器

Tianci Zhao, Changwen Zheng, Qingmeng Zhu, Hao He
{"title":"SwinTransTrack:多对象跟踪使用移位窗口变压器","authors":"Tianci Zhao, Changwen Zheng, Qingmeng Zhu, Hao He","doi":"10.1109/ISCIT55906.2022.9931284","DOIUrl":null,"url":null,"abstract":"With the great popularity of Transformers, there has been many works using Transformers to explore the temporal association properties of objects between different video frames. However, due to the large-scale variation of visual entities and the high resolution of pixels in images, the original Transformers take so long time for both training and inference. Based on Swin Transformer, we propose SwinTransTrack, a novel shift-window encoder and decoder model. Different from the original model, we fuse low-rank adaptation to achieve feature dimension enhancement and propose a new shifted-window decoder network to obtain accurate displacement to associate trajectories. Finally, We conducted extensive quantitative experiments on different MOT datasets, MOT17 and MOT20. The experimental results show that SwinTransTrack achieves 75.5 MOTA on MOT17 and 67.5 MOTA on MOT20, leading both MOT competitions.","PeriodicalId":325919,"journal":{"name":"2022 21st International Symposium on Communications and Information Technologies (ISCIT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SwinTransTrack: Multi-object Tracking Using Shifted Window Transformers\",\"authors\":\"Tianci Zhao, Changwen Zheng, Qingmeng Zhu, Hao He\",\"doi\":\"10.1109/ISCIT55906.2022.9931284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the great popularity of Transformers, there has been many works using Transformers to explore the temporal association properties of objects between different video frames. However, due to the large-scale variation of visual entities and the high resolution of pixels in images, the original Transformers take so long time for both training and inference. Based on Swin Transformer, we propose SwinTransTrack, a novel shift-window encoder and decoder model. Different from the original model, we fuse low-rank adaptation to achieve feature dimension enhancement and propose a new shifted-window decoder network to obtain accurate displacement to associate trajectories. Finally, We conducted extensive quantitative experiments on different MOT datasets, MOT17 and MOT20. The experimental results show that SwinTransTrack achieves 75.5 MOTA on MOT17 and 67.5 MOTA on MOT20, leading both MOT competitions.\",\"PeriodicalId\":325919,\"journal\":{\"name\":\"2022 21st International Symposium on Communications and Information Technologies (ISCIT)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium on Communications and Information Technologies (ISCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCIT55906.2022.9931284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Communications and Information Technologies (ISCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT55906.2022.9931284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着《变形金刚》的普及,已经有很多作品利用《变形金刚》来探索不同视频帧之间对象的时间关联属性。然而,由于视觉实体的大规模变化和图像中像素的高分辨率,原始变形金刚的训练和推理都需要很长时间。在Swin Transformer的基础上,提出了一种新的移位窗编码器和解码器模型——SwinTransTrack。与原始模型不同,我们融合了低秩自适应来实现特征维度增强,并提出了一种新的移位窗口解码器网络来获得精确的关联轨迹位移。最后,我们在不同的MOT数据集mo17和mo20上进行了大量的定量实验。实验结果表明,SwinTransTrack在mo17和mo20上分别取得了75.5和67.5的MOTA,在MOT竞争中均处于领先地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SwinTransTrack: Multi-object Tracking Using Shifted Window Transformers
With the great popularity of Transformers, there has been many works using Transformers to explore the temporal association properties of objects between different video frames. However, due to the large-scale variation of visual entities and the high resolution of pixels in images, the original Transformers take so long time for both training and inference. Based on Swin Transformer, we propose SwinTransTrack, a novel shift-window encoder and decoder model. Different from the original model, we fuse low-rank adaptation to achieve feature dimension enhancement and propose a new shifted-window decoder network to obtain accurate displacement to associate trajectories. Finally, We conducted extensive quantitative experiments on different MOT datasets, MOT17 and MOT20. The experimental results show that SwinTransTrack achieves 75.5 MOTA on MOT17 and 67.5 MOTA on MOT20, leading both MOT competitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信