差分进化的真实随机突变策略

Sheng-Ta Hsieh, Shih-Yuan Chiu, Shi-Jim Yen
{"title":"差分进化的真实随机突变策略","authors":"Sheng-Ta Hsieh, Shih-Yuan Chiu, Shi-Jim Yen","doi":"10.1109/TAAI.2012.33","DOIUrl":null,"url":null,"abstract":"In this paper, an improved DE is proposed to improve optimization performance by implementing three new schemes: sharing mutation, current-to-better mutation and real-random-mutation. When evolution speed is standstill, sharing mutation can increase the search depth, in addition, real-random mutation can disturb individuals and can help individuals diverge to local optimum. When the evolution progresses well, current-to-better mutation will drive individuals to the correct evolution direction. Experiments were conducted on 15 of CEC 2005 test functions, include unimodal, multimodal and hybrid composition functions, to present performance of the proposed method and to compare with 5 variants of DE includes JADE, jDE, SaDE, DEGL and MDE_pBX. The proposed method exhibits better performance than other five related works in solving all the test functions.","PeriodicalId":385063,"journal":{"name":"2012 Conference on Technologies and Applications of Artificial Intelligence","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real Random Mutation Strategy for Differential Evolution\",\"authors\":\"Sheng-Ta Hsieh, Shih-Yuan Chiu, Shi-Jim Yen\",\"doi\":\"10.1109/TAAI.2012.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved DE is proposed to improve optimization performance by implementing three new schemes: sharing mutation, current-to-better mutation and real-random-mutation. When evolution speed is standstill, sharing mutation can increase the search depth, in addition, real-random mutation can disturb individuals and can help individuals diverge to local optimum. When the evolution progresses well, current-to-better mutation will drive individuals to the correct evolution direction. Experiments were conducted on 15 of CEC 2005 test functions, include unimodal, multimodal and hybrid composition functions, to present performance of the proposed method and to compare with 5 variants of DE includes JADE, jDE, SaDE, DEGL and MDE_pBX. The proposed method exhibits better performance than other five related works in solving all the test functions.\",\"PeriodicalId\":385063,\"journal\":{\"name\":\"2012 Conference on Technologies and Applications of Artificial Intelligence\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Conference on Technologies and Applications of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2012.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Technologies and Applications of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2012.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种改进的遗传算法,通过实现共享突变、电流变优突变和实时随机突变三种新方案来提高遗传算法的优化性能。当进化速度为静止时,共享突变可以增加搜索深度,此外,实随机突变可以干扰个体,帮助个体向局部最优发散。当进化进行得很好时,由现在向更好的突变会驱使个体向正确的进化方向发展。在CEC 2005的15个测试函数(包括单模态、多模态和混合组合函数)上进行了实验,验证了所提方法的性能,并与JADE、jDE、SaDE、DEGL和MDE_pBX等5种DE变体进行了比较。该方法在求解所有测试函数方面均优于其他五种相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real Random Mutation Strategy for Differential Evolution
In this paper, an improved DE is proposed to improve optimization performance by implementing three new schemes: sharing mutation, current-to-better mutation and real-random-mutation. When evolution speed is standstill, sharing mutation can increase the search depth, in addition, real-random mutation can disturb individuals and can help individuals diverge to local optimum. When the evolution progresses well, current-to-better mutation will drive individuals to the correct evolution direction. Experiments were conducted on 15 of CEC 2005 test functions, include unimodal, multimodal and hybrid composition functions, to present performance of the proposed method and to compare with 5 variants of DE includes JADE, jDE, SaDE, DEGL and MDE_pBX. The proposed method exhibits better performance than other five related works in solving all the test functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信