{"title":"基于神经网络的双星感应电机不同电平逆变器直接转矩改进控制","authors":"M. Lazreg, A. Bentaallah","doi":"10.5772/intechopen.89877","DOIUrl":null,"url":null,"abstract":"In this chapter, we will compare the performance of a multilevel direct torque control (DTC) control for the double-star induction machine (DSIM) based on artificial neural network (ANN). The application of DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some disadvantages such as variable switching frequency, size, and complexity of the switching tables and the strong ripple torque. A solution to this problem is to increase the output voltage level of the inverter and associate the DTC control with modern control techniques such as artificial neural networks. Theoretical elements and simulation results are presented and discussed. As results, the flux and torque ripple of the five-level DTC-ANN control significantly reduces compared to the flux and torque ripple of the three-level DTC-ANN control. By viewing the simulation results using MATLAB/Simulink for both controls, the results obtained showed a very satisfactory behavior of this machine.","PeriodicalId":106471,"journal":{"name":"Direct Torque Control Strategies of Electrical Machines","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Direct Torque Control Based on Neural Network of the Double-Star Induction Machine Using Deferent Multilevel Inverter\",\"authors\":\"M. Lazreg, A. Bentaallah\",\"doi\":\"10.5772/intechopen.89877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, we will compare the performance of a multilevel direct torque control (DTC) control for the double-star induction machine (DSIM) based on artificial neural network (ANN). The application of DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some disadvantages such as variable switching frequency, size, and complexity of the switching tables and the strong ripple torque. A solution to this problem is to increase the output voltage level of the inverter and associate the DTC control with modern control techniques such as artificial neural networks. Theoretical elements and simulation results are presented and discussed. As results, the flux and torque ripple of the five-level DTC-ANN control significantly reduces compared to the flux and torque ripple of the three-level DTC-ANN control. By viewing the simulation results using MATLAB/Simulink for both controls, the results obtained showed a very satisfactory behavior of this machine.\",\"PeriodicalId\":106471,\"journal\":{\"name\":\"Direct Torque Control Strategies of Electrical Machines\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Direct Torque Control Strategies of Electrical Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Direct Torque Control Strategies of Electrical Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Direct Torque Control Based on Neural Network of the Double-Star Induction Machine Using Deferent Multilevel Inverter
In this chapter, we will compare the performance of a multilevel direct torque control (DTC) control for the double-star induction machine (DSIM) based on artificial neural network (ANN). The application of DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some disadvantages such as variable switching frequency, size, and complexity of the switching tables and the strong ripple torque. A solution to this problem is to increase the output voltage level of the inverter and associate the DTC control with modern control techniques such as artificial neural networks. Theoretical elements and simulation results are presented and discussed. As results, the flux and torque ripple of the five-level DTC-ANN control significantly reduces compared to the flux and torque ripple of the three-level DTC-ANN control. By viewing the simulation results using MATLAB/Simulink for both controls, the results obtained showed a very satisfactory behavior of this machine.