噪声环境下基于种群的进化算法运行时分析

A. Prügel-Bennett, J. Rowe, J. Shapiro
{"title":"噪声环境下基于种群的进化算法运行时分析","authors":"A. Prügel-Bennett, J. Rowe, J. Shapiro","doi":"10.1145/2725494.2725498","DOIUrl":null,"url":null,"abstract":"This paper analyses a generational evolutionary algorithm using only selection and uniform crossover. With a probability arbitrarily close to one the evolutionary algorithm is shown to solve onemax in O(n log2(n)) function evaluations using a population of size c,n, log(n). We then show that this algorithm can solve onemax with noise variance n again in O(n log2(n)) function evaluations.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Run-Time Analysis of Population-Based Evolutionary Algorithm in Noisy Environments\",\"authors\":\"A. Prügel-Bennett, J. Rowe, J. Shapiro\",\"doi\":\"10.1145/2725494.2725498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses a generational evolutionary algorithm using only selection and uniform crossover. With a probability arbitrarily close to one the evolutionary algorithm is shown to solve onemax in O(n log2(n)) function evaluations using a population of size c,n, log(n). We then show that this algorithm can solve onemax with noise variance n again in O(n log2(n)) function evaluations.\",\"PeriodicalId\":112331,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2725494.2725498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文分析了一种仅选择和均匀交叉的世代进化算法。在任意接近于1的概率下,进化算法可以使用大小为c,n, log(n)的总体在O(n log2(n))个函数评估中求解onemax。然后,我们证明了该算法可以在O(n log2(n))函数求值中再次求解噪声方差为n的onemax。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Run-Time Analysis of Population-Based Evolutionary Algorithm in Noisy Environments
This paper analyses a generational evolutionary algorithm using only selection and uniform crossover. With a probability arbitrarily close to one the evolutionary algorithm is shown to solve onemax in O(n log2(n)) function evaluations using a population of size c,n, log(n). We then show that this algorithm can solve onemax with noise variance n again in O(n log2(n)) function evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信