{"title":"噪声环境下基于种群的进化算法运行时分析","authors":"A. Prügel-Bennett, J. Rowe, J. Shapiro","doi":"10.1145/2725494.2725498","DOIUrl":null,"url":null,"abstract":"This paper analyses a generational evolutionary algorithm using only selection and uniform crossover. With a probability arbitrarily close to one the evolutionary algorithm is shown to solve onemax in O(n log2(n)) function evaluations using a population of size c,n, log(n). We then show that this algorithm can solve onemax with noise variance n again in O(n log2(n)) function evaluations.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Run-Time Analysis of Population-Based Evolutionary Algorithm in Noisy Environments\",\"authors\":\"A. Prügel-Bennett, J. Rowe, J. Shapiro\",\"doi\":\"10.1145/2725494.2725498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses a generational evolutionary algorithm using only selection and uniform crossover. With a probability arbitrarily close to one the evolutionary algorithm is shown to solve onemax in O(n log2(n)) function evaluations using a population of size c,n, log(n). We then show that this algorithm can solve onemax with noise variance n again in O(n log2(n)) function evaluations.\",\"PeriodicalId\":112331,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2725494.2725498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Run-Time Analysis of Population-Based Evolutionary Algorithm in Noisy Environments
This paper analyses a generational evolutionary algorithm using only selection and uniform crossover. With a probability arbitrarily close to one the evolutionary algorithm is shown to solve onemax in O(n log2(n)) function evaluations using a population of size c,n, log(n). We then show that this algorithm can solve onemax with noise variance n again in O(n log2(n)) function evaluations.