基于相位神经元的误差最小化

I. Pavaloiu, P. Cristea
{"title":"基于相位神经元的误差最小化","authors":"I. Pavaloiu, P. Cristea","doi":"10.1109/NEUREL.2012.6419996","DOIUrl":null,"url":null,"abstract":"Complex-Valued Neural Networks are extensions of the classical Neural Networks. They have complex-valued weights, accept complex inputs and have more computational power than the classical ones. We discuss in this paper the training for Phase-Based Neurons, neural processing elements similar to Universal Binary Neurons, that uses as weights and bias complex numbers with unit magnitude, the phase being the only tunable parameter.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Error minimization in Phase-Based Neurons\",\"authors\":\"I. Pavaloiu, P. Cristea\",\"doi\":\"10.1109/NEUREL.2012.6419996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex-Valued Neural Networks are extensions of the classical Neural Networks. They have complex-valued weights, accept complex inputs and have more computational power than the classical ones. We discuss in this paper the training for Phase-Based Neurons, neural processing elements similar to Universal Binary Neurons, that uses as weights and bias complex numbers with unit magnitude, the phase being the only tunable parameter.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6419996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

复值神经网络是经典神经网络的扩展。它们具有复杂的权值,接受复杂的输入,并且比经典算法具有更强的计算能力。本文讨论了基于相位的神经元的训练,这是一种类似于通用二值神经元的神经处理元素,它使用单位大小的复数作为权重和偏置,相位是唯一可调的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error minimization in Phase-Based Neurons
Complex-Valued Neural Networks are extensions of the classical Neural Networks. They have complex-valued weights, accept complex inputs and have more computational power than the classical ones. We discuss in this paper the training for Phase-Based Neurons, neural processing elements similar to Universal Binary Neurons, that uses as weights and bias complex numbers with unit magnitude, the phase being the only tunable parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信