基于gpu的fm无源双基地雷达实时信号处理

Pei-lu Zhang, Yong Wu, Jun Wang, Jiahui Qiao
{"title":"基于gpu的fm无源双基地雷达实时信号处理","authors":"Pei-lu Zhang, Yong Wu, Jun Wang, Jiahui Qiao","doi":"10.1109/ICDSP.2014.6900723","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of the real-time signal processing work of a FM-based passive bistatic radar (PBR) system. The signal processing architecture is fully deployed on Graphic Processing Units (GPUs) using Compute Unified Device Architecture (CUDA). By exploring the parallelism of the algorithms, we manage to assign the data processing task from two carrier frequencies on one NVIDIA Tesla C2075. Numbers of mapping strategies are explored during the research and are presented in this paper. While yielding a substantial performance on real-time signal processing, the GPU implementation delivers speedups of 37x over standard Central Processing Units (CPUs). Besides, the GPU implementation exhibits flexibility in sustaining data load from more carrier frequencies.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Real-time signal processing for FM-based passive bistatic radar using GPUs\",\"authors\":\"Pei-lu Zhang, Yong Wu, Jun Wang, Jiahui Qiao\",\"doi\":\"10.1109/ICDSP.2014.6900723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of the real-time signal processing work of a FM-based passive bistatic radar (PBR) system. The signal processing architecture is fully deployed on Graphic Processing Units (GPUs) using Compute Unified Device Architecture (CUDA). By exploring the parallelism of the algorithms, we manage to assign the data processing task from two carrier frequencies on one NVIDIA Tesla C2075. Numbers of mapping strategies are explored during the research and are presented in this paper. While yielding a substantial performance on real-time signal processing, the GPU implementation delivers speedups of 37x over standard Central Processing Units (CPUs). Besides, the GPU implementation exhibits flexibility in sustaining data load from more carrier frequencies.\",\"PeriodicalId\":301856,\"journal\":{\"name\":\"2014 19th International Conference on Digital Signal Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2014.6900723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了基于fm的无源双基地雷达(PBR)系统的实时信号处理问题。信号处理架构完全部署在图形处理单元(gpu)使用计算统一设备架构(CUDA)。通过探索算法的并行性,我们设法在一台NVIDIA Tesla C2075上分配两个载波频率的数据处理任务。在研究过程中探索了许多映射策略,并在本文中提出了这些策略。虽然在实时信号处理方面表现出色,但GPU实现的速度比标准中央处理器(cpu)快37倍。此外,GPU实现在维持更多载波频率的数据负载方面表现出灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time signal processing for FM-based passive bistatic radar using GPUs
This paper addresses the problem of the real-time signal processing work of a FM-based passive bistatic radar (PBR) system. The signal processing architecture is fully deployed on Graphic Processing Units (GPUs) using Compute Unified Device Architecture (CUDA). By exploring the parallelism of the algorithms, we manage to assign the data processing task from two carrier frequencies on one NVIDIA Tesla C2075. Numbers of mapping strategies are explored during the research and are presented in this paper. While yielding a substantial performance on real-time signal processing, the GPU implementation delivers speedups of 37x over standard Central Processing Units (CPUs). Besides, the GPU implementation exhibits flexibility in sustaining data load from more carrier frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信