啤酒定性分析中电子舌的数据融合

J. M. Gutiérrez-Salgado, Laura Moreno-Barón, Xavier Cetó, A. Mimendia, M. Valle
{"title":"啤酒定性分析中电子舌的数据融合","authors":"J. M. Gutiérrez-Salgado, Laura Moreno-Barón, Xavier Cetó, A. Mimendia, M. Valle","doi":"10.1109/NaBIC.2012.6402240","DOIUrl":null,"url":null,"abstract":"This paper presents the development of an Electronic Tongue based on two different arrays of electrochemical sensors (i.e. potentiometric and voltammetric) for the identification of three styles of beer. Conventionally, electrochemical measurements contain hundreds of records and cannot be processed directly, due to its high data dimension. Therefore, information obtained from both sensor families was prepossessed in order to extract representative features and then fused to improve the classification ability regarding to the use of single sensor data. On the one hand, Discrete Wavelet Transform and statistical procedures were employed as feature extraction techniques. On the other hand, classification model was build using Linear Discriminant Analysis and validated by Leave-one-out cross-validation procedure. Final results demonstrate that the ET employing data fusion is able to distinguish 100% of the types of beer as well as its manufacturing process.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data fusion in electronic tongue for qualitative analysis of beers\",\"authors\":\"J. M. Gutiérrez-Salgado, Laura Moreno-Barón, Xavier Cetó, A. Mimendia, M. Valle\",\"doi\":\"10.1109/NaBIC.2012.6402240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of an Electronic Tongue based on two different arrays of electrochemical sensors (i.e. potentiometric and voltammetric) for the identification of three styles of beer. Conventionally, electrochemical measurements contain hundreds of records and cannot be processed directly, due to its high data dimension. Therefore, information obtained from both sensor families was prepossessed in order to extract representative features and then fused to improve the classification ability regarding to the use of single sensor data. On the one hand, Discrete Wavelet Transform and statistical procedures were employed as feature extraction techniques. On the other hand, classification model was build using Linear Discriminant Analysis and validated by Leave-one-out cross-validation procedure. Final results demonstrate that the ET employing data fusion is able to distinguish 100% of the types of beer as well as its manufacturing process.\",\"PeriodicalId\":103091,\"journal\":{\"name\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaBIC.2012.6402240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种基于两种不同电化学传感器阵列(即电位法和伏安法)的电子舌,用于三种啤酒的识别。通常,电化学测量包含数百条记录,由于其高数据维度而无法直接处理。因此,对两个传感器族的信息进行预占有,提取具有代表性的特征,然后进行融合,以提高单个传感器数据使用的分类能力。一方面,采用离散小波变换和统计方法作为特征提取技术。另一方面,利用线性判别分析建立分类模型,并通过留一交叉验证程序进行验证。最终结果表明,采用数据融合的ET能够100%区分啤酒的类型及其制造过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data fusion in electronic tongue for qualitative analysis of beers
This paper presents the development of an Electronic Tongue based on two different arrays of electrochemical sensors (i.e. potentiometric and voltammetric) for the identification of three styles of beer. Conventionally, electrochemical measurements contain hundreds of records and cannot be processed directly, due to its high data dimension. Therefore, information obtained from both sensor families was prepossessed in order to extract representative features and then fused to improve the classification ability regarding to the use of single sensor data. On the one hand, Discrete Wavelet Transform and statistical procedures were employed as feature extraction techniques. On the other hand, classification model was build using Linear Discriminant Analysis and validated by Leave-one-out cross-validation procedure. Final results demonstrate that the ET employing data fusion is able to distinguish 100% of the types of beer as well as its manufacturing process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信