生物医学图像中的箭头检测

K. Santosh, Naved Alam, P. Roy, L. Wendling, Sameer Kiran Antani, G. Thoma
{"title":"生物医学图像中的箭头检测","authors":"K. Santosh, Naved Alam, P. Roy, L. Wendling, Sameer Kiran Antani, G. Thoma","doi":"10.2352/ISSN.2470-1173.2016.17.DRR-054","DOIUrl":null,"url":null,"abstract":"Medical images in biomedical documents tend to be complex by nature and often contain several regions that are annotated using arrows. Arrowhead detection is a critical precursor to regionof-interest (ROI) labeling and image content analysis. To detect arrowheads, images are first binarized using fuzzy binarization technique to segment a set of candidates based on connected component principle. To select arrow candidates, we use convexity defect-based filtering, which is followed by template matching via dynamic programming. The similarity score via dynamic time warping (DTW) confirms the presence of arrows in the image. Our test on biomedical images from imageCLEF 2010 collection shows the interest of the technique.","PeriodicalId":152377,"journal":{"name":"Document Recognition and Retrieval","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Arrowhead detection in biomedical images\",\"authors\":\"K. Santosh, Naved Alam, P. Roy, L. Wendling, Sameer Kiran Antani, G. Thoma\",\"doi\":\"10.2352/ISSN.2470-1173.2016.17.DRR-054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical images in biomedical documents tend to be complex by nature and often contain several regions that are annotated using arrows. Arrowhead detection is a critical precursor to regionof-interest (ROI) labeling and image content analysis. To detect arrowheads, images are first binarized using fuzzy binarization technique to segment a set of candidates based on connected component principle. To select arrow candidates, we use convexity defect-based filtering, which is followed by template matching via dynamic programming. The similarity score via dynamic time warping (DTW) confirms the presence of arrows in the image. Our test on biomedical images from imageCLEF 2010 collection shows the interest of the technique.\",\"PeriodicalId\":152377,\"journal\":{\"name\":\"Document Recognition and Retrieval\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Document Recognition and Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/ISSN.2470-1173.2016.17.DRR-054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Document Recognition and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2016.17.DRR-054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生物医学文档中的医学图像本质上是复杂的,并且通常包含使用箭头注释的几个区域。箭头检测是区域兴趣(ROI)标记和图像内容分析的关键先导。为了检测箭头,首先使用模糊二值化技术对图像进行二值化,并根据连通分量原理分割出一组候选图像。为了选择候选箭头,我们使用基于凸性缺陷的滤波,然后通过动态规划进行模板匹配。通过动态时间翘曲(DTW)的相似性评分确认了图像中箭头的存在。我们对imageCLEF 2010收集的生物医学图像的测试显示了该技术的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arrowhead detection in biomedical images
Medical images in biomedical documents tend to be complex by nature and often contain several regions that are annotated using arrows. Arrowhead detection is a critical precursor to regionof-interest (ROI) labeling and image content analysis. To detect arrowheads, images are first binarized using fuzzy binarization technique to segment a set of candidates based on connected component principle. To select arrow candidates, we use convexity defect-based filtering, which is followed by template matching via dynamic programming. The similarity score via dynamic time warping (DTW) confirms the presence of arrows in the image. Our test on biomedical images from imageCLEF 2010 collection shows the interest of the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信