使用分割的自动单粒子生长测量

M. Rafique, Muhamamd Ishfaq Hussain, M. Hassan, W. Jung, Bong-Joong Kim, M. Jeon
{"title":"使用分割的自动单粒子生长测量","authors":"M. Rafique, Muhamamd Ishfaq Hussain, M. Hassan, W. Jung, Bong-Joong Kim, M. Jeon","doi":"10.1109/AVSS56176.2022.9959296","DOIUrl":null,"url":null,"abstract":"Fine-grain imaging is revealing secrets of nature with every passing day and artificial intelligence is reducing the manual effort required for detailed analysis. This work proposes an automated growth measurement of a particle in electron microscopic images in real-time. The particle selected in this study is an Au spiky nanoparticle (SNP) that develops spikes over the course of its growth. In this study, multiple techniques from conventional and sophisticated algorithms are used to segment the particle using supervised and unsupervised learning techniques. A comprehensive analysis of the automated techniques is presented with qualitative and quantitative results.","PeriodicalId":408581,"journal":{"name":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Single Particle Growth Measurement using Segmentation\",\"authors\":\"M. Rafique, Muhamamd Ishfaq Hussain, M. Hassan, W. Jung, Bong-Joong Kim, M. Jeon\",\"doi\":\"10.1109/AVSS56176.2022.9959296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grain imaging is revealing secrets of nature with every passing day and artificial intelligence is reducing the manual effort required for detailed analysis. This work proposes an automated growth measurement of a particle in electron microscopic images in real-time. The particle selected in this study is an Au spiky nanoparticle (SNP) that develops spikes over the course of its growth. In this study, multiple techniques from conventional and sophisticated algorithms are used to segment the particle using supervised and unsupervised learning techniques. A comprehensive analysis of the automated techniques is presented with qualitative and quantitative results.\",\"PeriodicalId\":408581,\"journal\":{\"name\":\"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS56176.2022.9959296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS56176.2022.9959296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

精细成像技术日新月异地揭示着大自然的秘密,人工智能正在减少进行详细分析所需的人工劳动。这项工作提出了一种在电子显微镜图像中实时自动测量粒子生长的方法。在这项研究中选择的粒子是一种金尖状纳米粒子(SNP),在其生长过程中会产生尖刺。在这项研究中,使用多种技术从传统的和复杂的算法来分割粒子使用监督和非监督学习技术。对自动化技术进行了全面的分析,并给出了定性和定量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Single Particle Growth Measurement using Segmentation
Fine-grain imaging is revealing secrets of nature with every passing day and artificial intelligence is reducing the manual effort required for detailed analysis. This work proposes an automated growth measurement of a particle in electron microscopic images in real-time. The particle selected in this study is an Au spiky nanoparticle (SNP) that develops spikes over the course of its growth. In this study, multiple techniques from conventional and sophisticated algorithms are used to segment the particle using supervised and unsupervised learning techniques. A comprehensive analysis of the automated techniques is presented with qualitative and quantitative results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信