R^2中一阶系统的共振和Landesman-Lazer条件

M. Garrione
{"title":"R^2中一阶系统的共振和Landesman-Lazer条件","authors":"M. Garrione","doi":"10.4418/2011.66.1.15","DOIUrl":null,"url":null,"abstract":"The first part of the paper surveys the concept of resonance for T-periodic nonlinear problems. In the second part, some new results about existence conditions for nonlinear planar systems are presented. In particular, the Landesman-Lazer conditions are generalized to systems in R ^2 where the nonlinearity interacts with two resonant Hamiltonians. Such results apply to second order equations, generalizing previous theorems by Fabry [4] (for the undamped case), and Frederickson-Lazer [9] (for the case with friction). The results have been obtained with A. Fonda, and have been published in [8].","PeriodicalId":107618,"journal":{"name":"Le Matematiche","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonance and Landesman-Lazer conditions for first order systems in R^2\",\"authors\":\"M. Garrione\",\"doi\":\"10.4418/2011.66.1.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first part of the paper surveys the concept of resonance for T-periodic nonlinear problems. In the second part, some new results about existence conditions for nonlinear planar systems are presented. In particular, the Landesman-Lazer conditions are generalized to systems in R ^2 where the nonlinearity interacts with two resonant Hamiltonians. Such results apply to second order equations, generalizing previous theorems by Fabry [4] (for the undamped case), and Frederickson-Lazer [9] (for the case with friction). The results have been obtained with A. Fonda, and have been published in [8].\",\"PeriodicalId\":107618,\"journal\":{\"name\":\"Le Matematiche\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Le Matematiche\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4418/2011.66.1.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Le Matematiche","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4418/2011.66.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文第一部分概述了t周期非线性问题的共振概念。第二部分给出了平面非线性系统存在条件的一些新结果。特别地,将Landesman-Lazer条件推广到R ^2中非线性与两个共振哈密顿量相互作用的系统。这些结果适用于二阶方程,推广了Fabry[4](针对无阻尼情况)和Frederickson-Lazer[9](针对有摩擦情况)的先前定理。该结果由A. Fonda获得,并发表于[8]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonance and Landesman-Lazer conditions for first order systems in R^2
The first part of the paper surveys the concept of resonance for T-periodic nonlinear problems. In the second part, some new results about existence conditions for nonlinear planar systems are presented. In particular, the Landesman-Lazer conditions are generalized to systems in R ^2 where the nonlinearity interacts with two resonant Hamiltonians. Such results apply to second order equations, generalizing previous theorems by Fabry [4] (for the undamped case), and Frederickson-Lazer [9] (for the case with friction). The results have been obtained with A. Fonda, and have been published in [8].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信