{"title":"基于查询的可视化共现数据贝叶斯嵌入","authors":"Mohammad Khoshneshin, W. Street, P. Srinivasan","doi":"10.1109/ICMLA.2011.42","DOIUrl":null,"url":null,"abstract":"We propose a generative probabilistic model for visualizing co-occurrence data. In co-occurrence data, there are a number of entities and the data includes the frequency of two entities co-occurring. We propose a Bayesian approach to infer the latent variables. Given the intractability of inference for the posterior distribution, we use approximate inference via variational approaches. The proposed Bayesian approach enables accurate embedding in high-dimensional space which is not useful for visualization. Therefore, we propose a method to embed a filtered number of entities for a query -- query-based visualization. Our experiments show that our proposed models outperform co-occurrence data embedding, the state-of-the-art model for visualizing co-occurrence data.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian Embedding of Co-occurrence Data for Query-Based Visualization\",\"authors\":\"Mohammad Khoshneshin, W. Street, P. Srinivasan\",\"doi\":\"10.1109/ICMLA.2011.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a generative probabilistic model for visualizing co-occurrence data. In co-occurrence data, there are a number of entities and the data includes the frequency of two entities co-occurring. We propose a Bayesian approach to infer the latent variables. Given the intractability of inference for the posterior distribution, we use approximate inference via variational approaches. The proposed Bayesian approach enables accurate embedding in high-dimensional space which is not useful for visualization. Therefore, we propose a method to embed a filtered number of entities for a query -- query-based visualization. Our experiments show that our proposed models outperform co-occurrence data embedding, the state-of-the-art model for visualizing co-occurrence data.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Embedding of Co-occurrence Data for Query-Based Visualization
We propose a generative probabilistic model for visualizing co-occurrence data. In co-occurrence data, there are a number of entities and the data includes the frequency of two entities co-occurring. We propose a Bayesian approach to infer the latent variables. Given the intractability of inference for the posterior distribution, we use approximate inference via variational approaches. The proposed Bayesian approach enables accurate embedding in high-dimensional space which is not useful for visualization. Therefore, we propose a method to embed a filtered number of entities for a query -- query-based visualization. Our experiments show that our proposed models outperform co-occurrence data embedding, the state-of-the-art model for visualizing co-occurrence data.