平面图,负权边,最短路径和近线性时间

Jittat Fakcharoenphol, Satish Rao
{"title":"平面图,负权边,最短路径和近线性时间","authors":"Jittat Fakcharoenphol, Satish Rao","doi":"10.1109/SFCS.2001.959897","DOIUrl":null,"url":null,"abstract":"The authors present an O(n log/sup 3/ n) time algorithm for finding shortest paths in a planar graph with real weights. This can be compared to the best previous strongly polynomial time algorithm developed by R. Lipton et al., (1978 )which ran in O(n/sup 3/2/) time, and the best polynomial algorithm developed by M. Henzinger et al. (1994) which ran in O/spl tilde/(n/sup 4/3/) time. We also present significantly improved algorithms for query and dynamic versions of the shortest path problems.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"253","resultStr":"{\"title\":\"Planar graphs, negative weight edges, shortest paths, and near linear time\",\"authors\":\"Jittat Fakcharoenphol, Satish Rao\",\"doi\":\"10.1109/SFCS.2001.959897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present an O(n log/sup 3/ n) time algorithm for finding shortest paths in a planar graph with real weights. This can be compared to the best previous strongly polynomial time algorithm developed by R. Lipton et al., (1978 )which ran in O(n/sup 3/2/) time, and the best polynomial algorithm developed by M. Henzinger et al. (1994) which ran in O/spl tilde/(n/sup 4/3/) time. We also present significantly improved algorithms for query and dynamic versions of the shortest path problems.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"253\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 253

摘要

作者提出了一种O(n log/sup 3/ n)时间算法,用于在具有实权的平面图中寻找最短路径。这可以与R. Lipton等人(1978)开发的最佳强多项式时间算法进行比较,该算法在O(n/sup 3/2/)时间内运行,以及M. Henzinger等人(1994)开发的最佳多项式算法在O/spl波浪/(n/sup 4/3/)时间内运行。我们还提出了查询和动态版本最短路径问题的显著改进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar graphs, negative weight edges, shortest paths, and near linear time
The authors present an O(n log/sup 3/ n) time algorithm for finding shortest paths in a planar graph with real weights. This can be compared to the best previous strongly polynomial time algorithm developed by R. Lipton et al., (1978 )which ran in O(n/sup 3/2/) time, and the best polynomial algorithm developed by M. Henzinger et al. (1994) which ran in O/spl tilde/(n/sup 4/3/) time. We also present significantly improved algorithms for query and dynamic versions of the shortest path problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信