Web漏洞检测的聚类方法

Anthony Dessiatnikoff, R. Akrout, E. Alata, M. Kaâniche, V. Nicomette
{"title":"Web漏洞检测的聚类方法","authors":"Anthony Dessiatnikoff, R. Akrout, E. Alata, M. Kaâniche, V. Nicomette","doi":"10.1109/PRDC.2011.31","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm aimed at the vulnerability assessment of web applications following a black-box approach. The objective is to improve the detection efficiency of existing vulnerability scanners and to move a step forward toward the automation of this process. Our approach covers various types of vulnerabilities but this paper mainly focuses on SQL injections. The proposed algorithm is based on the automatic classification of the responses returned by the web servers using data clustering techniques and provides especially crafted inputs that lead to successful attacks when vulnerabilities are present. Experimental results on several vulnerable applications and comparative analysis with some existing tools confirm the effectiveness of our approach.","PeriodicalId":254760,"journal":{"name":"2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A Clustering Approach for Web Vulnerabilities Detection\",\"authors\":\"Anthony Dessiatnikoff, R. Akrout, E. Alata, M. Kaâniche, V. Nicomette\",\"doi\":\"10.1109/PRDC.2011.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm aimed at the vulnerability assessment of web applications following a black-box approach. The objective is to improve the detection efficiency of existing vulnerability scanners and to move a step forward toward the automation of this process. Our approach covers various types of vulnerabilities but this paper mainly focuses on SQL injections. The proposed algorithm is based on the automatic classification of the responses returned by the web servers using data clustering techniques and provides especially crafted inputs that lead to successful attacks when vulnerabilities are present. Experimental results on several vulnerable applications and comparative analysis with some existing tools confirm the effectiveness of our approach.\",\"PeriodicalId\":254760,\"journal\":{\"name\":\"2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRDC.2011.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2011.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文提出了一种基于黑盒方法的web应用漏洞评估新算法。目标是提高现有漏洞扫描器的检测效率,并向该过程的自动化迈进一步。我们的方法涵盖了各种类型的漏洞,但本文主要关注SQL注入。所提出的算法基于使用数据集群技术对web服务器返回的响应进行自动分类,并提供特别精心制作的输入,当存在漏洞时导致成功的攻击。在几个易受攻击的应用程序上的实验结果以及与一些现有工具的对比分析证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Clustering Approach for Web Vulnerabilities Detection
This paper presents a new algorithm aimed at the vulnerability assessment of web applications following a black-box approach. The objective is to improve the detection efficiency of existing vulnerability scanners and to move a step forward toward the automation of this process. Our approach covers various types of vulnerabilities but this paper mainly focuses on SQL injections. The proposed algorithm is based on the automatic classification of the responses returned by the web servers using data clustering techniques and provides especially crafted inputs that lead to successful attacks when vulnerabilities are present. Experimental results on several vulnerable applications and comparative analysis with some existing tools confirm the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信