基于NMPC控制器的双足机器人跨越大型障碍物的步进

N. Kalamian, M. Farrokhi
{"title":"基于NMPC控制器的双足机器人跨越大型障碍物的步进","authors":"N. Kalamian, M. Farrokhi","doi":"10.1109/ICCIAUTOM.2011.6356784","DOIUrl":null,"url":null,"abstract":"One of the main challenges for biped robots is to step over large obstacles during walking. In this paper, a control method is proposed for walking and stepping over large obstacles based on the Nonlinear Model Predictive Control (NMPC) method. One of the main advantages of the proposed method is that it is trajectory free, which gives the robot the ability to step over any feasible obstacle. Moreover, the NMPC guarantees dynamic stability during walking and crossing over the target. In addition, a multilayer perceptron neural network is employed for identification of the dynamic model of the robot. In this way, the proposed method can cope with uncertainties in the robot model. Simulation results show good performance of the proposed method applied to a 173 cm robot stepping over a 40×15cm obstacle dynamically in the sagittal plane while maintaining a safety clearance from it, without any need for reference trajectory.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Stepping of biped robots over large obstacles using NMPC controller\",\"authors\":\"N. Kalamian, M. Farrokhi\",\"doi\":\"10.1109/ICCIAUTOM.2011.6356784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges for biped robots is to step over large obstacles during walking. In this paper, a control method is proposed for walking and stepping over large obstacles based on the Nonlinear Model Predictive Control (NMPC) method. One of the main advantages of the proposed method is that it is trajectory free, which gives the robot the ability to step over any feasible obstacle. Moreover, the NMPC guarantees dynamic stability during walking and crossing over the target. In addition, a multilayer perceptron neural network is employed for identification of the dynamic model of the robot. In this way, the proposed method can cope with uncertainties in the robot model. Simulation results show good performance of the proposed method applied to a 173 cm robot stepping over a 40×15cm obstacle dynamically in the sagittal plane while maintaining a safety clearance from it, without any need for reference trajectory.\",\"PeriodicalId\":438427,\"journal\":{\"name\":\"The 2nd International Conference on Control, Instrumentation and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd International Conference on Control, Instrumentation and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6356784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

双足机器人的主要挑战之一是在行走过程中跨越大型障碍物。本文提出了一种基于非线性模型预测控制(NMPC)方法的大型障碍物行走和跨越控制方法。该方法的一个主要优点是它是无轨迹的,这使得机器人能够跨越任何可行的障碍。此外,NMPC保证了在行走和穿越目标时的动态稳定性。此外,采用多层感知器神经网络对机器人的动态模型进行识别。这样,所提出的方法可以处理机器人模型中的不确定性。仿真结果表明,该方法在不需要参考轨迹的情况下,在矢状面动态跨越40×15cm障碍物,同时保持与障碍物的安全间隙,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stepping of biped robots over large obstacles using NMPC controller
One of the main challenges for biped robots is to step over large obstacles during walking. In this paper, a control method is proposed for walking and stepping over large obstacles based on the Nonlinear Model Predictive Control (NMPC) method. One of the main advantages of the proposed method is that it is trajectory free, which gives the robot the ability to step over any feasible obstacle. Moreover, the NMPC guarantees dynamic stability during walking and crossing over the target. In addition, a multilayer perceptron neural network is employed for identification of the dynamic model of the robot. In this way, the proposed method can cope with uncertainties in the robot model. Simulation results show good performance of the proposed method applied to a 173 cm robot stepping over a 40×15cm obstacle dynamically in the sagittal plane while maintaining a safety clearance from it, without any need for reference trajectory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信