L. Gan, H. Fu, Chao Yang, W. Luk, Wei Xue, O. Mencer, Xiaomeng Huang, Guangwen Yang
{"title":"求解欧拉大气方程的高效绿色数据流引擎","authors":"L. Gan, H. Fu, Chao Yang, W. Luk, Wei Xue, O. Mencer, Xiaomeng Huang, Guangwen Yang","doi":"10.1109/FPL.2014.6927462","DOIUrl":null,"url":null,"abstract":"Atmospheric modeling is an essential issue in the study of climate change. However, due to the complicated algorithmic and communication models, scientists and researchers are facing tough challenges in finding efficient solutions to solve the atmospheric equations. In this paper, we accelerate a solver for the three-dimensional Euler atmospheric equations through reconfigurable data flow engines. We first propose a hybrid design that achieves efficient resource allocation and data reuse. Furthermore, through algorithmic offsetting, fast memory table, and customizable-precision arithmetic, we map a complex Euler kernel into a single FPGA chip, which can perform 956 floating point operations per cycle. In a 1U-chassis, our CPU-DFE unit with 8 FPGA chips is 18.5 times faster and 8.3 times more power efficient than a multicore system based on two 12-core Intel E5-2697 (Ivy Bridge) CPUs, and is 6.2 times faster and 5.2 times more power efficient than a hybrid unit equipped with two 12-core Intel E5-2697 (Ivy Bridge) CPUs and three Intel Xeon Phi 5120d (MIC) cards.","PeriodicalId":172795,"journal":{"name":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A highly-efficient and green data flow engine for solving euler atmospheric equations\",\"authors\":\"L. Gan, H. Fu, Chao Yang, W. Luk, Wei Xue, O. Mencer, Xiaomeng Huang, Guangwen Yang\",\"doi\":\"10.1109/FPL.2014.6927462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric modeling is an essential issue in the study of climate change. However, due to the complicated algorithmic and communication models, scientists and researchers are facing tough challenges in finding efficient solutions to solve the atmospheric equations. In this paper, we accelerate a solver for the three-dimensional Euler atmospheric equations through reconfigurable data flow engines. We first propose a hybrid design that achieves efficient resource allocation and data reuse. Furthermore, through algorithmic offsetting, fast memory table, and customizable-precision arithmetic, we map a complex Euler kernel into a single FPGA chip, which can perform 956 floating point operations per cycle. In a 1U-chassis, our CPU-DFE unit with 8 FPGA chips is 18.5 times faster and 8.3 times more power efficient than a multicore system based on two 12-core Intel E5-2697 (Ivy Bridge) CPUs, and is 6.2 times faster and 5.2 times more power efficient than a hybrid unit equipped with two 12-core Intel E5-2697 (Ivy Bridge) CPUs and three Intel Xeon Phi 5120d (MIC) cards.\",\"PeriodicalId\":172795,\"journal\":{\"name\":\"2014 24th International Conference on Field Programmable Logic and Applications (FPL)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 24th International Conference on Field Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2014.6927462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2014.6927462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A highly-efficient and green data flow engine for solving euler atmospheric equations
Atmospheric modeling is an essential issue in the study of climate change. However, due to the complicated algorithmic and communication models, scientists and researchers are facing tough challenges in finding efficient solutions to solve the atmospheric equations. In this paper, we accelerate a solver for the three-dimensional Euler atmospheric equations through reconfigurable data flow engines. We first propose a hybrid design that achieves efficient resource allocation and data reuse. Furthermore, through algorithmic offsetting, fast memory table, and customizable-precision arithmetic, we map a complex Euler kernel into a single FPGA chip, which can perform 956 floating point operations per cycle. In a 1U-chassis, our CPU-DFE unit with 8 FPGA chips is 18.5 times faster and 8.3 times more power efficient than a multicore system based on two 12-core Intel E5-2697 (Ivy Bridge) CPUs, and is 6.2 times faster and 5.2 times more power efficient than a hybrid unit equipped with two 12-core Intel E5-2697 (Ivy Bridge) CPUs and three Intel Xeon Phi 5120d (MIC) cards.