RISC-V系统IO物理内存保护的实现

Jien Hau Ng, Chee Hong Ang, Hwa Chaw Law
{"title":"RISC-V系统IO物理内存保护的实现","authors":"Jien Hau Ng, Chee Hong Ang, Hwa Chaw Law","doi":"10.1109/MCSoC57363.2022.00066","DOIUrl":null,"url":null,"abstract":"Physical memories or RAMs are essential components in a computer system to hold temporary information required for both software and hardware to work properly. When a system's security is compromised (e.g., due to a malicious application), sensitive information being held in the memories can be leaked out for example to “the cloud”. The RISC-V privileged architecture standard adopts a method called Physical Memory Protection (PMP) to segregate a system's memory into regions with different policy and permissions to prevent unprivileged software from accessing unauthorized regions. However, PMP does not prevent malicious software from hijacking an Input/Output (IO) device with Direct Memory Access (DMA) capability to indirectly gain unauthorized accesses and hence, a similar method commonly termed as “IOPMP” is being worked on in the RISC-V community. This paper describes an early implementation of IOPMP and how it is used to protect physical memory regions in a RISC-V system. Then, the potential performance impact of IOPMP is briefly elaborated. There are still work to be done and this early IOPMP implementation allows various aspects of the protection method such as its scalability, practicality, and effectiveness etc. to be studied for future enhancement.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Realization of IO Physical Memory Protection for RISC-V Systems\",\"authors\":\"Jien Hau Ng, Chee Hong Ang, Hwa Chaw Law\",\"doi\":\"10.1109/MCSoC57363.2022.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical memories or RAMs are essential components in a computer system to hold temporary information required for both software and hardware to work properly. When a system's security is compromised (e.g., due to a malicious application), sensitive information being held in the memories can be leaked out for example to “the cloud”. The RISC-V privileged architecture standard adopts a method called Physical Memory Protection (PMP) to segregate a system's memory into regions with different policy and permissions to prevent unprivileged software from accessing unauthorized regions. However, PMP does not prevent malicious software from hijacking an Input/Output (IO) device with Direct Memory Access (DMA) capability to indirectly gain unauthorized accesses and hence, a similar method commonly termed as “IOPMP” is being worked on in the RISC-V community. This paper describes an early implementation of IOPMP and how it is used to protect physical memory regions in a RISC-V system. Then, the potential performance impact of IOPMP is briefly elaborated. There are still work to be done and this early IOPMP implementation allows various aspects of the protection method such as its scalability, practicality, and effectiveness etc. to be studied for future enhancement.\",\"PeriodicalId\":150801,\"journal\":{\"name\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC57363.2022.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物理存储器或ram是计算机系统中保存软件和硬件正常工作所需的临时信息的基本组件。当系统的安全性受到威胁时(例如,由于恶意应用程序),存储在内存中的敏感信息可能会泄露出去,例如“云”。RISC-V特权架构标准采用物理内存保护(Physical Memory Protection, PMP)的方法,将系统的内存划分为具有不同策略和权限的区域,防止非特权软件访问未授权的区域。然而,PMP并不能阻止恶意软件劫持具有直接内存访问(DMA)功能的输入/输出(IO)设备来间接获得未经授权的访问,因此,RISC-V社区正在研究一种通常称为“IOPMP”的类似方法。本文描述了IOPMP的早期实现,以及如何使用它来保护RISC-V系统中的物理内存区域。然后,简要阐述了IOPMP对性能的潜在影响。仍然有工作要做,这个早期的IOPMP实现允许保护方法的各个方面,如其可扩展性,实用性和有效性等进行研究,以供未来增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Realization of IO Physical Memory Protection for RISC-V Systems
Physical memories or RAMs are essential components in a computer system to hold temporary information required for both software and hardware to work properly. When a system's security is compromised (e.g., due to a malicious application), sensitive information being held in the memories can be leaked out for example to “the cloud”. The RISC-V privileged architecture standard adopts a method called Physical Memory Protection (PMP) to segregate a system's memory into regions with different policy and permissions to prevent unprivileged software from accessing unauthorized regions. However, PMP does not prevent malicious software from hijacking an Input/Output (IO) device with Direct Memory Access (DMA) capability to indirectly gain unauthorized accesses and hence, a similar method commonly termed as “IOPMP” is being worked on in the RISC-V community. This paper describes an early implementation of IOPMP and how it is used to protect physical memory regions in a RISC-V system. Then, the potential performance impact of IOPMP is briefly elaborated. There are still work to be done and this early IOPMP implementation allows various aspects of the protection method such as its scalability, practicality, and effectiveness etc. to be studied for future enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信