{"title":"基于分层特征学习的脂肪-水磁共振图像分割","authors":"Faezeh Fallah, Bin Yang, S. Walter, F. Bamberg","doi":"10.23919/SPA.2018.8563415","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a deformation-Iregistration-free method for multilabel segmentation of fat-water MR images without need to prior localization or geometry estimation. This method employed a multiresolution (hierarchical) feature- and prior-based Random Walker graph and a hierarchical conditional random field (HCRF). To incorporate both aspatial (intra-patch) and spatial (inter-patch neighborhood) information into the image segmentation, the proposed random walker graph was made of a multiresolution spatial and a multiresolution aspatial (prior-based) sub-graph. Edge weights and prior probabilities of this graph as well as the energy terms of the HCRF were determined by a hierarchical random decision forest classifier. This classifier was trained using multiscale local and contextual features extracted from fat-water (2-channel) magnetic resonance (MR) images. The proposed method was trained and evaluated for simultaneous volumetric segmentation of vertebral bodies and intervertebral discs on fat-water MR images. These evaluations revealed its comparable accuracy to the state-of-the-art while demanding less computations and training data. The proposed method was, however, generic and extendible for segmenting any kind of tissues on other multichannel images.","PeriodicalId":265587,"journal":{"name":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Feature-learning Graph-based Segmentation of Fat-Water MR Images\",\"authors\":\"Faezeh Fallah, Bin Yang, S. Walter, F. Bamberg\",\"doi\":\"10.23919/SPA.2018.8563415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a deformation-Iregistration-free method for multilabel segmentation of fat-water MR images without need to prior localization or geometry estimation. This method employed a multiresolution (hierarchical) feature- and prior-based Random Walker graph and a hierarchical conditional random field (HCRF). To incorporate both aspatial (intra-patch) and spatial (inter-patch neighborhood) information into the image segmentation, the proposed random walker graph was made of a multiresolution spatial and a multiresolution aspatial (prior-based) sub-graph. Edge weights and prior probabilities of this graph as well as the energy terms of the HCRF were determined by a hierarchical random decision forest classifier. This classifier was trained using multiscale local and contextual features extracted from fat-water (2-channel) magnetic resonance (MR) images. The proposed method was trained and evaluated for simultaneous volumetric segmentation of vertebral bodies and intervertebral discs on fat-water MR images. These evaluations revealed its comparable accuracy to the state-of-the-art while demanding less computations and training data. The proposed method was, however, generic and extendible for segmenting any kind of tissues on other multichannel images.\",\"PeriodicalId\":265587,\"journal\":{\"name\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SPA.2018.8563415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SPA.2018.8563415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Feature-learning Graph-based Segmentation of Fat-Water MR Images
In this paper, we proposed a deformation-Iregistration-free method for multilabel segmentation of fat-water MR images without need to prior localization or geometry estimation. This method employed a multiresolution (hierarchical) feature- and prior-based Random Walker graph and a hierarchical conditional random field (HCRF). To incorporate both aspatial (intra-patch) and spatial (inter-patch neighborhood) information into the image segmentation, the proposed random walker graph was made of a multiresolution spatial and a multiresolution aspatial (prior-based) sub-graph. Edge weights and prior probabilities of this graph as well as the energy terms of the HCRF were determined by a hierarchical random decision forest classifier. This classifier was trained using multiscale local and contextual features extracted from fat-water (2-channel) magnetic resonance (MR) images. The proposed method was trained and evaluated for simultaneous volumetric segmentation of vertebral bodies and intervertebral discs on fat-water MR images. These evaluations revealed its comparable accuracy to the state-of-the-art while demanding less computations and training data. The proposed method was, however, generic and extendible for segmenting any kind of tissues on other multichannel images.