{"title":"阳性特征的切眼完美场失全","authors":"L. Berger, S. Rozensztajn","doi":"10.5802/ahl.150","DOIUrl":null,"url":null,"abstract":"Let $E$ be a field of characteristic $p$. The group $\\mathbf{Z}_p^\\times$ acts on $E((X))$ by $a \\cdot f(X) = f((1+X)^a-1)$. This action extends to the $X$-adic completion $\\tilde{\\mathbf{E}}$ of $\\cup_{n \\geq 0} E((X^{1/p^n}))$. We show how to recover $E((X))$ from the valued $E$-vector space $\\tilde{\\mathbf{E}}$ endowed with its action of $\\mathbf{Z}_p^\\times$. To do this, we introduce the notion of super-H\\\"older vector in certain $E$-linear representations of $\\mathbf{Z}_p$. This is a characteristic $p$ analogue of the notion of locally analytic vector in $p$-adic Banach representations of $p$-adic Lie groups.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Decompletion of cyclotomic perfectoid fields in positive characteristic\",\"authors\":\"L. Berger, S. Rozensztajn\",\"doi\":\"10.5802/ahl.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E$ be a field of characteristic $p$. The group $\\\\mathbf{Z}_p^\\\\times$ acts on $E((X))$ by $a \\\\cdot f(X) = f((1+X)^a-1)$. This action extends to the $X$-adic completion $\\\\tilde{\\\\mathbf{E}}$ of $\\\\cup_{n \\\\geq 0} E((X^{1/p^n}))$. We show how to recover $E((X))$ from the valued $E$-vector space $\\\\tilde{\\\\mathbf{E}}$ endowed with its action of $\\\\mathbf{Z}_p^\\\\times$. To do this, we introduce the notion of super-H\\\\\\\"older vector in certain $E$-linear representations of $\\\\mathbf{Z}_p$. This is a characteristic $p$ analogue of the notion of locally analytic vector in $p$-adic Banach representations of $p$-adic Lie groups.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decompletion of cyclotomic perfectoid fields in positive characteristic
Let $E$ be a field of characteristic $p$. The group $\mathbf{Z}_p^\times$ acts on $E((X))$ by $a \cdot f(X) = f((1+X)^a-1)$. This action extends to the $X$-adic completion $\tilde{\mathbf{E}}$ of $\cup_{n \geq 0} E((X^{1/p^n}))$. We show how to recover $E((X))$ from the valued $E$-vector space $\tilde{\mathbf{E}}$ endowed with its action of $\mathbf{Z}_p^\times$. To do this, we introduce the notion of super-H\"older vector in certain $E$-linear representations of $\mathbf{Z}_p$. This is a characteristic $p$ analogue of the notion of locally analytic vector in $p$-adic Banach representations of $p$-adic Lie groups.