基于集成的人脸识别核费雪分析

Yafei Chen, Baochang Zhang
{"title":"基于集成的人脸识别核费雪分析","authors":"Yafei Chen, Baochang Zhang","doi":"10.1109/CCPR.2008.59","DOIUrl":null,"url":null,"abstract":"This paper proposes an Ensemble-based kernel fisher analysis method for face recognition, which can effectively increase the performance of the histogram of gabor phase pattern (HGPP) method. The novelty of the paper lies in that it explains in theory why histogram can be combined with kernel fisher method, which the extended Chi-square similarity rules are positive definite. We then proposed the ensemble-based kernel fisher method to enhance the performance of HGPP, experiments on the large-scale FERET and CAS-PEAL database show that the proposed method gets much better recognition rates than the HGPP.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble-Based Kernel Fisher Analysis for Face Recognition\",\"authors\":\"Yafei Chen, Baochang Zhang\",\"doi\":\"10.1109/CCPR.2008.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an Ensemble-based kernel fisher analysis method for face recognition, which can effectively increase the performance of the histogram of gabor phase pattern (HGPP) method. The novelty of the paper lies in that it explains in theory why histogram can be combined with kernel fisher method, which the extended Chi-square similarity rules are positive definite. We then proposed the ensemble-based kernel fisher method to enhance the performance of HGPP, experiments on the large-scale FERET and CAS-PEAL database show that the proposed method gets much better recognition rates than the HGPP.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于集成的人脸识别核费雪分析方法,有效地提高了gabor相位模式直方图(HGPP)方法的性能。本文的新颖之处在于从理论上解释了为什么直方图可以与扩展卡方相似规则是正定的核费雪方法相结合。然后,我们提出了基于集成的核fisher方法来提高HGPP的性能,在大规模FERET和CAS-PEAL数据库上的实验表明,该方法比HGPP获得了更好的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble-Based Kernel Fisher Analysis for Face Recognition
This paper proposes an Ensemble-based kernel fisher analysis method for face recognition, which can effectively increase the performance of the histogram of gabor phase pattern (HGPP) method. The novelty of the paper lies in that it explains in theory why histogram can be combined with kernel fisher method, which the extended Chi-square similarity rules are positive definite. We then proposed the ensemble-based kernel fisher method to enhance the performance of HGPP, experiments on the large-scale FERET and CAS-PEAL database show that the proposed method gets much better recognition rates than the HGPP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信