基于熵的图像压缩研究进展

Arthur C. Depoian, Ethan R. Adams, Aidan G. Kurz, Colleen P. Bailey, P. Guturu, K. Namuduri
{"title":"基于熵的图像压缩研究进展","authors":"Arthur C. Depoian, Ethan R. Adams, Aidan G. Kurz, Colleen P. Bailey, P. Guturu, K. Namuduri","doi":"10.1109/MetroCon56047.2022.9971134","DOIUrl":null,"url":null,"abstract":"The future of image compression is abundant with the opportunities recently developed through the application of advanced neural network algorithms configured to take into account multiple image parameters. This progress has spurred on further progression into more complex architectures to extract the feature of the image for optimal compression. Of the many models available, this work tracks an evolution of end to end image compression by first analyzing BLS2017 and its successors, BMSHJ2018 and MS2020.","PeriodicalId":292881,"journal":{"name":"2022 IEEE MetroCon","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent Advances in Entropy Based Image Compression\",\"authors\":\"Arthur C. Depoian, Ethan R. Adams, Aidan G. Kurz, Colleen P. Bailey, P. Guturu, K. Namuduri\",\"doi\":\"10.1109/MetroCon56047.2022.9971134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The future of image compression is abundant with the opportunities recently developed through the application of advanced neural network algorithms configured to take into account multiple image parameters. This progress has spurred on further progression into more complex architectures to extract the feature of the image for optimal compression. Of the many models available, this work tracks an evolution of end to end image compression by first analyzing BLS2017 and its successors, BMSHJ2018 and MS2020.\",\"PeriodicalId\":292881,\"journal\":{\"name\":\"2022 IEEE MetroCon\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MetroCon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroCon56047.2022.9971134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MetroCon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroCon56047.2022.9971134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过应用先进的神经网络算法来考虑多个图像参数,图像压缩的未来充满了机会。这一进展刺激了进一步发展到更复杂的架构,以提取图像的特征,以实现最佳压缩。在众多可用模型中,本工作通过首先分析BLS2017及其后继模型BMSHJ2018和MS2020,跟踪端到端图像压缩的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances in Entropy Based Image Compression
The future of image compression is abundant with the opportunities recently developed through the application of advanced neural network algorithms configured to take into account multiple image parameters. This progress has spurred on further progression into more complex architectures to extract the feature of the image for optimal compression. Of the many models available, this work tracks an evolution of end to end image compression by first analyzing BLS2017 and its successors, BMSHJ2018 and MS2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信