未来大质量机器人火星着陆器任务的超音速反推进

M. Lobbia, A. Wolf, C. Whetsel
{"title":"未来大质量机器人火星着陆器任务的超音速反推进","authors":"M. Lobbia, A. Wolf, C. Whetsel","doi":"10.2322/TASTJ.17.19","DOIUrl":null,"url":null,"abstract":"A feasibility study was conducted to investigate the potential performance advantages of Supersonic Retro-Propulsion in support of future high-mass Mars robotic landing missions. A notional reference architecture for a potential future Mars Sample Return formed the basis for assuming a 4.7 m diameter SRP entry vehicle containing the Mars Ascent Vehicle element. Configuration analysis was conducted to ensure that the payload and required SRP components (including engines and propellant) fit within in the capsule volume. Optimized trajectory analysis highlighted several key performance sensitivities of SRP for ballistic coefficients of 150, 300, and 450 kg/m 2 . These results indicated a broad SRP ignition envelope (1-4 km altitude, 300-750 m/s velocity), as well as relatively small propellant mass fraction sensitivities to SRP thrust/weight, landing site elevation, and the application of a 4-g entry deceleration constraint (relevant for future crewed mission trajectories). Finally, mass-sizing was performed to assess sensitivities to ballistic coefficient and entry velocity, and showcased the ability of the SRP system to land payload masses on the order of twice that of MSL.","PeriodicalId":120185,"journal":{"name":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supersonic Retro-Propulsion for Future High-Mass Robotic Mars Lander Missions\",\"authors\":\"M. Lobbia, A. Wolf, C. Whetsel\",\"doi\":\"10.2322/TASTJ.17.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A feasibility study was conducted to investigate the potential performance advantages of Supersonic Retro-Propulsion in support of future high-mass Mars robotic landing missions. A notional reference architecture for a potential future Mars Sample Return formed the basis for assuming a 4.7 m diameter SRP entry vehicle containing the Mars Ascent Vehicle element. Configuration analysis was conducted to ensure that the payload and required SRP components (including engines and propellant) fit within in the capsule volume. Optimized trajectory analysis highlighted several key performance sensitivities of SRP for ballistic coefficients of 150, 300, and 450 kg/m 2 . These results indicated a broad SRP ignition envelope (1-4 km altitude, 300-750 m/s velocity), as well as relatively small propellant mass fraction sensitivities to SRP thrust/weight, landing site elevation, and the application of a 4-g entry deceleration constraint (relevant for future crewed mission trajectories). Finally, mass-sizing was performed to assess sensitivities to ballistic coefficient and entry velocity, and showcased the ability of the SRP system to land payload masses on the order of twice that of MSL.\",\"PeriodicalId\":120185,\"journal\":{\"name\":\"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2322/TASTJ.17.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/TASTJ.17.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究超音速反推进在未来大质量火星机器人着陆任务中的潜在性能优势,进行了可行性研究。一个潜在的未来火星样本返回的概念参考架构构成了假设直径4.7米的SRP进入飞行器包含火星上升飞行器元素的基础。进行了结构分析,以确保有效载荷和所需的SRP组件(包括发动机和推进剂)适合在太空舱体积内。优化的弹道分析突出了SRP在弹道系数为150、300和450 kg/ m2时的几个关键性能敏感性。这些结果表明了较宽的SRP点火包线(1-4千米高度,300-750米/秒速度),以及相对较小的推进剂质量分数对SRP推力/重量、着陆点高度的敏感性,以及4-g进入减速约束(与未来载人任务轨迹相关)的应用。最后,进行了质量尺寸评估,以评估对弹道系数和进入速度的敏感性,并展示了SRP系统在MSL的两倍量级上着陆有效载荷质量的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supersonic Retro-Propulsion for Future High-Mass Robotic Mars Lander Missions
A feasibility study was conducted to investigate the potential performance advantages of Supersonic Retro-Propulsion in support of future high-mass Mars robotic landing missions. A notional reference architecture for a potential future Mars Sample Return formed the basis for assuming a 4.7 m diameter SRP entry vehicle containing the Mars Ascent Vehicle element. Configuration analysis was conducted to ensure that the payload and required SRP components (including engines and propellant) fit within in the capsule volume. Optimized trajectory analysis highlighted several key performance sensitivities of SRP for ballistic coefficients of 150, 300, and 450 kg/m 2 . These results indicated a broad SRP ignition envelope (1-4 km altitude, 300-750 m/s velocity), as well as relatively small propellant mass fraction sensitivities to SRP thrust/weight, landing site elevation, and the application of a 4-g entry deceleration constraint (relevant for future crewed mission trajectories). Finally, mass-sizing was performed to assess sensitivities to ballistic coefficient and entry velocity, and showcased the ability of the SRP system to land payload masses on the order of twice that of MSL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信