基于LDA主题模型的短文本分类

Qiuxing Chen, Lixiu Yao, Jie Yang
{"title":"基于LDA主题模型的短文本分类","authors":"Qiuxing Chen, Lixiu Yao, Jie Yang","doi":"10.1109/ICALIP.2016.7846525","DOIUrl":null,"url":null,"abstract":"As the rapid development of computer technology and network communication, short text data has increased enormously. Classifying the short text snippets is a great challenge to due to its less semantic information and high sparseness. In this paper, we proposed an improved short text classification method based on Latent Dirichlet Allocation topic model and K-Nearest Neighbor algorithm. The generated probabilistic topics help both make the texts more semantic-focused and reduce the sparseness. In addition, we present a novel topic similarity measure method with the topic-word matrix and the relationship of the discriminative terms between two short texts. A short text dataset for experiment validation is constructed by crawling the posts from Sina News website. The extensive and comparable experimental results obtained show the effectiveness of our proposed method.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Short text classification based on LDA topic model\",\"authors\":\"Qiuxing Chen, Lixiu Yao, Jie Yang\",\"doi\":\"10.1109/ICALIP.2016.7846525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the rapid development of computer technology and network communication, short text data has increased enormously. Classifying the short text snippets is a great challenge to due to its less semantic information and high sparseness. In this paper, we proposed an improved short text classification method based on Latent Dirichlet Allocation topic model and K-Nearest Neighbor algorithm. The generated probabilistic topics help both make the texts more semantic-focused and reduce the sparseness. In addition, we present a novel topic similarity measure method with the topic-word matrix and the relationship of the discriminative terms between two short texts. A short text dataset for experiment validation is constructed by crawling the posts from Sina News website. The extensive and comparable experimental results obtained show the effectiveness of our proposed method.\",\"PeriodicalId\":184170,\"journal\":{\"name\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALIP.2016.7846525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

随着计算机技术和网络通信的飞速发展,短文本数据急剧增加。摘要短文本的语义信息少,稀疏性高,对其进行分类是一个很大的挑战。本文提出了一种改进的基于Latent Dirichlet Allocation主题模型和K-Nearest Neighbor算法的短文本分类方法。生成的概率主题既可以使文本更加关注语义,又可以降低稀疏性。此外,我们还提出了一种新的基于主题词矩阵和两篇短文本之间判别词关系的主题相似度度量方法。通过抓取新浪新闻网站上的帖子,构建了一个用于实验验证的短文本数据集。大量的、可比较的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short text classification based on LDA topic model
As the rapid development of computer technology and network communication, short text data has increased enormously. Classifying the short text snippets is a great challenge to due to its less semantic information and high sparseness. In this paper, we proposed an improved short text classification method based on Latent Dirichlet Allocation topic model and K-Nearest Neighbor algorithm. The generated probabilistic topics help both make the texts more semantic-focused and reduce the sparseness. In addition, we present a novel topic similarity measure method with the topic-word matrix and the relationship of the discriminative terms between two short texts. A short text dataset for experiment validation is constructed by crawling the posts from Sina News website. The extensive and comparable experimental results obtained show the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信