经典三转子问题的稳定性和混沌性

G. Krishnaswami, Himalaya Senapati
{"title":"经典三转子问题的稳定性和混沌性","authors":"G. Krishnaswami, Himalaya Senapati","doi":"10.29195/iascs.02.01.0020","DOIUrl":null,"url":null,"abstract":"We study the equal-mass classical three rotor problem, a variant of the three body problem of celestial mechanics. The quantum $N$-rotor problem has been used to model chains of coupled Josephson junctions and also arises via a partial continuum limit of the Wick-rotated XY model. In units of the coupling, the energy serves as a control parameter. We find periodic 'pendulum' and 'breather' orbits at all energies and choreographies at relatively low energies. They furnish analogs of the Euler-Lagrange and figure-8 solutions of the planar three body problem. Integrability at very low energies gives way to a rather marked transition to chaos at $E_c \\approx 4$, followed by a gradual return to regularity as $E \\to \\infty$. We find four signatures of this transition: (a) the fraction of the area of Poincare surfaces occupied by chaotic sections rises sharply at $E_c$, (b) discrete symmetries are spontaneously broken at $E_c$, (c) $E=4$ is an accumulation point of stable to unstable transitions in pendulum solutions and (d) the Jacobi-Maupertuis curvature goes from being positive to having both signs above $E=4$. Moreover, Poincare plots also reveal a regime of global chaos slightly above $E_c$.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stability and chaos in the classical three rotor problem\",\"authors\":\"G. Krishnaswami, Himalaya Senapati\",\"doi\":\"10.29195/iascs.02.01.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the equal-mass classical three rotor problem, a variant of the three body problem of celestial mechanics. The quantum $N$-rotor problem has been used to model chains of coupled Josephson junctions and also arises via a partial continuum limit of the Wick-rotated XY model. In units of the coupling, the energy serves as a control parameter. We find periodic 'pendulum' and 'breather' orbits at all energies and choreographies at relatively low energies. They furnish analogs of the Euler-Lagrange and figure-8 solutions of the planar three body problem. Integrability at very low energies gives way to a rather marked transition to chaos at $E_c \\\\approx 4$, followed by a gradual return to regularity as $E \\\\to \\\\infty$. We find four signatures of this transition: (a) the fraction of the area of Poincare surfaces occupied by chaotic sections rises sharply at $E_c$, (b) discrete symmetries are spontaneously broken at $E_c$, (c) $E=4$ is an accumulation point of stable to unstable transitions in pendulum solutions and (d) the Jacobi-Maupertuis curvature goes from being positive to having both signs above $E=4$. Moreover, Poincare plots also reveal a regime of global chaos slightly above $E_c$.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29195/iascs.02.01.0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29195/iascs.02.01.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了等质量经典三转子问题,这是天体力学三体问题的一个变体。量子$N$ -转子问题已被用于模拟耦合约瑟夫森结链,也通过wick旋转XY模型的部分连续体极限出现。在耦合单元中,能量作为控制参数。我们发现周期性的“钟摆”和“呼吸”轨道在所有能量和舞蹈编排在相对较低的能量。它们提供了类似于平面三体问题的欧拉-拉格朗日和图8解法。在极低能量处的可积性在$E_c \approx 4$处让位于一个相当明显的过渡到混沌状态,随后在$E \to \infty$处逐渐恢复到规则状态。我们发现了这种转变的四个特征:(a)混沌部分占据的庞加莱曲面面积的比例在$E_c$处急剧上升,(b)离散对称性在$E_c$处自发地被打破,(c) $E=4$是钟摆解中稳定到不稳定转变的累积点,(d) Jacobi-Maupertuis曲率从正变为在$E=4$以上同时具有两个符号。此外,庞加莱图还揭示了一个略高于$E_c$的全球混乱政权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and chaos in the classical three rotor problem
We study the equal-mass classical three rotor problem, a variant of the three body problem of celestial mechanics. The quantum $N$-rotor problem has been used to model chains of coupled Josephson junctions and also arises via a partial continuum limit of the Wick-rotated XY model. In units of the coupling, the energy serves as a control parameter. We find periodic 'pendulum' and 'breather' orbits at all energies and choreographies at relatively low energies. They furnish analogs of the Euler-Lagrange and figure-8 solutions of the planar three body problem. Integrability at very low energies gives way to a rather marked transition to chaos at $E_c \approx 4$, followed by a gradual return to regularity as $E \to \infty$. We find four signatures of this transition: (a) the fraction of the area of Poincare surfaces occupied by chaotic sections rises sharply at $E_c$, (b) discrete symmetries are spontaneously broken at $E_c$, (c) $E=4$ is an accumulation point of stable to unstable transitions in pendulum solutions and (d) the Jacobi-Maupertuis curvature goes from being positive to having both signs above $E=4$. Moreover, Poincare plots also reveal a regime of global chaos slightly above $E_c$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信