{"title":"汽车用FCBGAs中芯片- uf和衬底- uf接口的持续高温断裂韧性演化","authors":"P. Lall, Padmanava Choudhury, A. Pandurangan","doi":"10.1109/ectc51906.2022.00252","DOIUrl":null,"url":null,"abstract":"Automotive advanced driver-assistance systems (ADAS) require the use of high I/O ball-grid array architectures including flip-chip ball-grid arrays (FCBGAs) in underhood environments. Drive-critical functions enabled by electronics include lane-departure warning systems, collision-avoidance systems, driver-alertness monitoring, park and drive assist systems, adaptive cruise-control, and semi-autonomous navigation. Electronics in underhood applications may be mounted on-engine, on-transmission, on firewall or on wheel-well where the temperature may be in the neighborhood of 150-200 °C. FCBGAs require the use of underfills to provide supplemental restraints for the flip-chip bumps to achieve the needed thermo-mechanical reliability. Current modeling methods lack foundational interface material-data for assessment of fracture at the substrate-UF and chip-UF in thermal cycling, monotonic loading, or mechanical fatigue. In this paper, the effect of sustained high temperature operation on the interfacial fracture toughness of the chip-underfill and substrate-underfill interface has been examined under both monotonic loads and fatigue loads. Bi-material specimen have been fabricated to study the interfacial fracture toughness of the interfaces after sustained high-temperature exposure. The measurements have been used to extract the fracture toughness values as a function of duration of sustained operation at high temperature. Paris’s Power Law parameters have been extracted for both the substrate-UF interface and the chip-UF interface.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustained High Temperature Fracture Toughness Evolution of Chip-UF and Substrate-UF Interfaces in FCBGAs for Automotive Applications\",\"authors\":\"P. Lall, Padmanava Choudhury, A. Pandurangan\",\"doi\":\"10.1109/ectc51906.2022.00252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive advanced driver-assistance systems (ADAS) require the use of high I/O ball-grid array architectures including flip-chip ball-grid arrays (FCBGAs) in underhood environments. Drive-critical functions enabled by electronics include lane-departure warning systems, collision-avoidance systems, driver-alertness monitoring, park and drive assist systems, adaptive cruise-control, and semi-autonomous navigation. Electronics in underhood applications may be mounted on-engine, on-transmission, on firewall or on wheel-well where the temperature may be in the neighborhood of 150-200 °C. FCBGAs require the use of underfills to provide supplemental restraints for the flip-chip bumps to achieve the needed thermo-mechanical reliability. Current modeling methods lack foundational interface material-data for assessment of fracture at the substrate-UF and chip-UF in thermal cycling, monotonic loading, or mechanical fatigue. In this paper, the effect of sustained high temperature operation on the interfacial fracture toughness of the chip-underfill and substrate-underfill interface has been examined under both monotonic loads and fatigue loads. Bi-material specimen have been fabricated to study the interfacial fracture toughness of the interfaces after sustained high-temperature exposure. The measurements have been used to extract the fracture toughness values as a function of duration of sustained operation at high temperature. Paris’s Power Law parameters have been extracted for both the substrate-UF interface and the chip-UF interface.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustained High Temperature Fracture Toughness Evolution of Chip-UF and Substrate-UF Interfaces in FCBGAs for Automotive Applications
Automotive advanced driver-assistance systems (ADAS) require the use of high I/O ball-grid array architectures including flip-chip ball-grid arrays (FCBGAs) in underhood environments. Drive-critical functions enabled by electronics include lane-departure warning systems, collision-avoidance systems, driver-alertness monitoring, park and drive assist systems, adaptive cruise-control, and semi-autonomous navigation. Electronics in underhood applications may be mounted on-engine, on-transmission, on firewall or on wheel-well where the temperature may be in the neighborhood of 150-200 °C. FCBGAs require the use of underfills to provide supplemental restraints for the flip-chip bumps to achieve the needed thermo-mechanical reliability. Current modeling methods lack foundational interface material-data for assessment of fracture at the substrate-UF and chip-UF in thermal cycling, monotonic loading, or mechanical fatigue. In this paper, the effect of sustained high temperature operation on the interfacial fracture toughness of the chip-underfill and substrate-underfill interface has been examined under both monotonic loads and fatigue loads. Bi-material specimen have been fabricated to study the interfacial fracture toughness of the interfaces after sustained high-temperature exposure. The measurements have been used to extract the fracture toughness values as a function of duration of sustained operation at high temperature. Paris’s Power Law parameters have been extracted for both the substrate-UF interface and the chip-UF interface.