基于可解释人工智能的自主智能体战略决策评价

Rendhir R. Prasad, R. R. Rejimol Robinson, Ciza Thomas, N. Balakrishnan
{"title":"基于可解释人工智能的自主智能体战略决策评价","authors":"Rendhir R. Prasad, R. R. Rejimol Robinson, Ciza Thomas, N. Balakrishnan","doi":"10.1109/ISEA-ISAP54304.2021.9689715","DOIUrl":null,"url":null,"abstract":"Autonomous intrusion detection systems assess the data intelligently and take strategic decision to detect and mitigate cyber-attacks. These decisions have to be explained and evaluated for the transparency and correctness. Explainable Artificial Intelligent (XAI) methods that explore how features contribute or influence a decision taken using an algorithm can be useful for the purpose. XAI method of Testing with Concept Activation Vectors (TCAV) has been used recently to show the importance of high level concepts for a prediction class in order to deliver explanations in the way humans communicate with each other. This work explores the possibility of using TCAV to evaluate the strategic decision made by autonomous agents. A case study in the context of DoS attack is analysed to show that TCAV scores for various DoS attack classes and normal class of KDD99 data set can be used to evaluate the strategic decisions. The proposed method of analysis provides a quantifiable method to justify the current strategy or change in the strategy if required.","PeriodicalId":115117,"journal":{"name":"2021 4th International Conference on Security and Privacy (ISEA-ISAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Strategic Decision taken by Autonomous Agent using Explainable AI\",\"authors\":\"Rendhir R. Prasad, R. R. Rejimol Robinson, Ciza Thomas, N. Balakrishnan\",\"doi\":\"10.1109/ISEA-ISAP54304.2021.9689715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous intrusion detection systems assess the data intelligently and take strategic decision to detect and mitigate cyber-attacks. These decisions have to be explained and evaluated for the transparency and correctness. Explainable Artificial Intelligent (XAI) methods that explore how features contribute or influence a decision taken using an algorithm can be useful for the purpose. XAI method of Testing with Concept Activation Vectors (TCAV) has been used recently to show the importance of high level concepts for a prediction class in order to deliver explanations in the way humans communicate with each other. This work explores the possibility of using TCAV to evaluate the strategic decision made by autonomous agents. A case study in the context of DoS attack is analysed to show that TCAV scores for various DoS attack classes and normal class of KDD99 data set can be used to evaluate the strategic decisions. The proposed method of analysis provides a quantifiable method to justify the current strategy or change in the strategy if required.\",\"PeriodicalId\":115117,\"journal\":{\"name\":\"2021 4th International Conference on Security and Privacy (ISEA-ISAP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Security and Privacy (ISEA-ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEA-ISAP54304.2021.9689715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Security and Privacy (ISEA-ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEA-ISAP54304.2021.9689715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自主入侵检测系统可以智能地评估数据,并采取战略决策来检测和减轻网络攻击。必须对这些决定进行解释和评估,以确保其透明度和正确性。可解释的人工智能(XAI)方法可以用于探索功能如何贡献或影响使用算法做出的决策。使用概念激活向量(TCAV)测试的XAI方法最近被用于显示高级概念对于预测类的重要性,以便以人类相互交流的方式传递解释。这项工作探索了使用TCAV来评估自主代理所做的战略决策的可能性。分析了DoS攻击背景下的一个案例研究,表明各种DoS攻击类别和KDD99数据集的正常类别的TCAV分数可用于评估战略决策。建议的分析方法提供了一种可量化的方法来证明当前的战略或在需要时改变战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Strategic Decision taken by Autonomous Agent using Explainable AI
Autonomous intrusion detection systems assess the data intelligently and take strategic decision to detect and mitigate cyber-attacks. These decisions have to be explained and evaluated for the transparency and correctness. Explainable Artificial Intelligent (XAI) methods that explore how features contribute or influence a decision taken using an algorithm can be useful for the purpose. XAI method of Testing with Concept Activation Vectors (TCAV) has been used recently to show the importance of high level concepts for a prediction class in order to deliver explanations in the way humans communicate with each other. This work explores the possibility of using TCAV to evaluate the strategic decision made by autonomous agents. A case study in the context of DoS attack is analysed to show that TCAV scores for various DoS attack classes and normal class of KDD99 data set can be used to evaluate the strategic decisions. The proposed method of analysis provides a quantifiable method to justify the current strategy or change in the strategy if required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信