{"title":"语篇分析的共同参照:一种神经方法","authors":"Grigorii Guz, G. Carenini","doi":"10.18653/v1/2020.codi-1.17","DOIUrl":null,"url":null,"abstract":"We present preliminary results on investigating the benefits of coreference resolution features for neural RST discourse parsing by considering different levels of coupling of the discourse parser with the coreference resolver. In particular, starting with a strong baseline neural parser unaware of any coreference information, we compare a parser which utilizes only the output of a neural coreference resolver, with a more sophisticated model, where discourse parsing and coreference resolution are jointly learned in a neural multitask fashion. Results indicate that these initial attempts to incorporate coreference information do not boost the performance of discourse parsing in a statistically significant way.","PeriodicalId":332037,"journal":{"name":"Proceedings of the First Workshop on Computational Approaches to Discourse","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Coreference for Discourse Parsing: A Neural Approach\",\"authors\":\"Grigorii Guz, G. Carenini\",\"doi\":\"10.18653/v1/2020.codi-1.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present preliminary results on investigating the benefits of coreference resolution features for neural RST discourse parsing by considering different levels of coupling of the discourse parser with the coreference resolver. In particular, starting with a strong baseline neural parser unaware of any coreference information, we compare a parser which utilizes only the output of a neural coreference resolver, with a more sophisticated model, where discourse parsing and coreference resolution are jointly learned in a neural multitask fashion. Results indicate that these initial attempts to incorporate coreference information do not boost the performance of discourse parsing in a statistically significant way.\",\"PeriodicalId\":332037,\"journal\":{\"name\":\"Proceedings of the First Workshop on Computational Approaches to Discourse\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Computational Approaches to Discourse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.codi-1.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Computational Approaches to Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.codi-1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coreference for Discourse Parsing: A Neural Approach
We present preliminary results on investigating the benefits of coreference resolution features for neural RST discourse parsing by considering different levels of coupling of the discourse parser with the coreference resolver. In particular, starting with a strong baseline neural parser unaware of any coreference information, we compare a parser which utilizes only the output of a neural coreference resolver, with a more sophisticated model, where discourse parsing and coreference resolution are jointly learned in a neural multitask fashion. Results indicate that these initial attempts to incorporate coreference information do not boost the performance of discourse parsing in a statistically significant way.