S. Sehestedt, G. Paul, David Rushton-Smith, Dikai Liu
{"title":"先验知识有助于钢桥维修结构环境的快速三维地图构建","authors":"S. Sehestedt, G. Paul, David Rushton-Smith, Dikai Liu","doi":"10.1109/CoASE.2013.6653892","DOIUrl":null,"url":null,"abstract":"Practical application of a robot in a structured, yet unknown environment, such as in bridge maintenance, requires the robot to quickly generate an accurate map of the surfaces in the environment. A consistent and complete map is fundamental to achieving reliable and robust operation. In a real-world and field application, sensor noise and insufficient exploration oftentimes result in an incomplete map. This paper presents a robust environment mapping approach using prior knowledge in combination with a single depth camera mounted on the end-effector of a robotic manipulator. The approach has been successfully implemented in an industrial setting for the purpose of steel bridge maintenance. A prototype robot, which includes the presented map building approach in its software package, has recently been delivered to industry.","PeriodicalId":191166,"journal":{"name":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Prior-knowledge assisted fast 3D map building of structured environments for steel bridge maintenance\",\"authors\":\"S. Sehestedt, G. Paul, David Rushton-Smith, Dikai Liu\",\"doi\":\"10.1109/CoASE.2013.6653892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Practical application of a robot in a structured, yet unknown environment, such as in bridge maintenance, requires the robot to quickly generate an accurate map of the surfaces in the environment. A consistent and complete map is fundamental to achieving reliable and robust operation. In a real-world and field application, sensor noise and insufficient exploration oftentimes result in an incomplete map. This paper presents a robust environment mapping approach using prior knowledge in combination with a single depth camera mounted on the end-effector of a robotic manipulator. The approach has been successfully implemented in an industrial setting for the purpose of steel bridge maintenance. A prototype robot, which includes the presented map building approach in its software package, has recently been delivered to industry.\",\"PeriodicalId\":191166,\"journal\":{\"name\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoASE.2013.6653892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoASE.2013.6653892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prior-knowledge assisted fast 3D map building of structured environments for steel bridge maintenance
Practical application of a robot in a structured, yet unknown environment, such as in bridge maintenance, requires the robot to quickly generate an accurate map of the surfaces in the environment. A consistent and complete map is fundamental to achieving reliable and robust operation. In a real-world and field application, sensor noise and insufficient exploration oftentimes result in an incomplete map. This paper presents a robust environment mapping approach using prior knowledge in combination with a single depth camera mounted on the end-effector of a robotic manipulator. The approach has been successfully implemented in an industrial setting for the purpose of steel bridge maintenance. A prototype robot, which includes the presented map building approach in its software package, has recently been delivered to industry.