存在本体映射错误的学习

Neeraj Koul, V. Honavar
{"title":"存在本体映射错误的学习","authors":"Neeraj Koul, V. Honavar","doi":"10.1109/WI-IAT.2010.138","DOIUrl":null,"url":null,"abstract":"The widespread use of ontologies to associate semantics with data has resulted in a growing interest in the problem of learning predictive models from data sources that use different ontologies to model the same underlying domain (world of interest). Learning from such \\emph{semantically disparate} data sources involves the use of a mapping to resolve semantic disparity among the ontologies used. Often, in practice, the mapping used to resolve the disparity may contain errors and as such the learning algorithms used in such a setting must be robust in presence of mapping errors. We reduce the problem of learning from semantically disparate data sources in the presence of mapping errors to a variant of the problem of learning in the presence of nasty classification noise. This reduction allows us to transfer theoretical results and algorithms from the latter to the former.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning in Presence of Ontology Mapping Errors\",\"authors\":\"Neeraj Koul, V. Honavar\",\"doi\":\"10.1109/WI-IAT.2010.138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread use of ontologies to associate semantics with data has resulted in a growing interest in the problem of learning predictive models from data sources that use different ontologies to model the same underlying domain (world of interest). Learning from such \\\\emph{semantically disparate} data sources involves the use of a mapping to resolve semantic disparity among the ontologies used. Often, in practice, the mapping used to resolve the disparity may contain errors and as such the learning algorithms used in such a setting must be robust in presence of mapping errors. We reduce the problem of learning from semantically disparate data sources in the presence of mapping errors to a variant of the problem of learning in the presence of nasty classification noise. This reduction allows us to transfer theoretical results and algorithms from the latter to the former.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本体将语义与数据关联起来的广泛使用,导致人们对从数据源学习预测模型的问题越来越感兴趣,这些数据源使用不同的本体对相同的底层领域(感兴趣的世界)建模。从这种\emph{语义上完全不同}的数据源中学习涉及到使用映射来解决所使用的本体之间的语义差异。通常,在实践中,用于解决差异的映射可能包含错误,因此,在这种设置中使用的学习算法必须在存在映射错误的情况下具有鲁棒性。我们将在存在映射错误的情况下从语义不同的数据源中学习的问题减少为在存在严重分类噪声的情况下学习问题的变体。这种简化使我们能够将理论结果和算法从后者转移到前者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning in Presence of Ontology Mapping Errors
The widespread use of ontologies to associate semantics with data has resulted in a growing interest in the problem of learning predictive models from data sources that use different ontologies to model the same underlying domain (world of interest). Learning from such \emph{semantically disparate} data sources involves the use of a mapping to resolve semantic disparity among the ontologies used. Often, in practice, the mapping used to resolve the disparity may contain errors and as such the learning algorithms used in such a setting must be robust in presence of mapping errors. We reduce the problem of learning from semantically disparate data sources in the presence of mapping errors to a variant of the problem of learning in the presence of nasty classification noise. This reduction allows us to transfer theoretical results and algorithms from the latter to the former.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信