基于深度强化学习的股票市场决策支持框架

Iure V. Brandão, J. P. J. D. Da Costa, B. Praciano, R. D. de Sousa, F. L. L. de Mendonça
{"title":"基于深度强化学习的股票市场决策支持框架","authors":"Iure V. Brandão, J. P. J. D. Da Costa, B. Praciano, R. D. de Sousa, F. L. L. de Mendonça","doi":"10.1109/WCNPS50723.2020.9263712","DOIUrl":null,"url":null,"abstract":"In stock markets, investors adopt different strategies to identify a sequence of profitable investment decisions to maximize their profits. To support the decision of investors, machine learning (ML) software is being applied. In particular, deep learning (DL) approaches are attractive since the stock market parameter presents a highly non-linear behavior, and since DL techniques can track short time and long time variations. In contrast to supervised ML techniques, deep reinforcement learning (DRL) gathers DL’s benefits and adds the real-time adaptation and improvement of the machine learning model. In this paper, we propose a decision support framework for the stock market based on DRL. By learning the trading rules, our framework recognizes patterns, maximizes the profit obtained, and provides recommendations to the investors. The proposed DRL framework outperforms the state-of-the-art framework with 0.86 % of F1 score for buy operations and 0.88 % of F1 score for sale operations in terms of evaluating the positioning strategy.","PeriodicalId":385668,"journal":{"name":"2020 Workshop on Communication Networks and Power Systems (WCNPS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decision support framework for the stock market using deep reinforcement learning\",\"authors\":\"Iure V. Brandão, J. P. J. D. Da Costa, B. Praciano, R. D. de Sousa, F. L. L. de Mendonça\",\"doi\":\"10.1109/WCNPS50723.2020.9263712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In stock markets, investors adopt different strategies to identify a sequence of profitable investment decisions to maximize their profits. To support the decision of investors, machine learning (ML) software is being applied. In particular, deep learning (DL) approaches are attractive since the stock market parameter presents a highly non-linear behavior, and since DL techniques can track short time and long time variations. In contrast to supervised ML techniques, deep reinforcement learning (DRL) gathers DL’s benefits and adds the real-time adaptation and improvement of the machine learning model. In this paper, we propose a decision support framework for the stock market based on DRL. By learning the trading rules, our framework recognizes patterns, maximizes the profit obtained, and provides recommendations to the investors. The proposed DRL framework outperforms the state-of-the-art framework with 0.86 % of F1 score for buy operations and 0.88 % of F1 score for sale operations in terms of evaluating the positioning strategy.\",\"PeriodicalId\":385668,\"journal\":{\"name\":\"2020 Workshop on Communication Networks and Power Systems (WCNPS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Workshop on Communication Networks and Power Systems (WCNPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNPS50723.2020.9263712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Workshop on Communication Networks and Power Systems (WCNPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNPS50723.2020.9263712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在股票市场中,投资者采用不同的策略来确定一系列有利可图的投资决策,以实现利润最大化。为了支持投资者的决策,正在应用机器学习(ML)软件。特别是,深度学习(DL)方法很有吸引力,因为股票市场参数呈现出高度非线性的行为,而且DL技术可以跟踪短时间和长时间的变化。与有监督的机器学习技术相比,深度强化学习(DRL)收集了深度学习的优点,并增加了机器学习模型的实时适应和改进。本文提出了一个基于DRL的股票市场决策支持框架。通过学习交易规则,我们的框架识别模式,最大化获得的利润,并为投资者提供建议。在评估定位策略方面,所提出的DRL框架优于最先进的框架,购买操作的F1得分为0.86%,销售操作的F1得分为0.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decision support framework for the stock market using deep reinforcement learning
In stock markets, investors adopt different strategies to identify a sequence of profitable investment decisions to maximize their profits. To support the decision of investors, machine learning (ML) software is being applied. In particular, deep learning (DL) approaches are attractive since the stock market parameter presents a highly non-linear behavior, and since DL techniques can track short time and long time variations. In contrast to supervised ML techniques, deep reinforcement learning (DRL) gathers DL’s benefits and adds the real-time adaptation and improvement of the machine learning model. In this paper, we propose a decision support framework for the stock market based on DRL. By learning the trading rules, our framework recognizes patterns, maximizes the profit obtained, and provides recommendations to the investors. The proposed DRL framework outperforms the state-of-the-art framework with 0.86 % of F1 score for buy operations and 0.88 % of F1 score for sale operations in terms of evaluating the positioning strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信