利用基因表达的meta分析对骨肉瘤进行分类

Olivia Alge, Jonathan Gryak, Yi-Yang Hua, K. Najarian
{"title":"利用基因表达的meta分析对骨肉瘤进行分类","authors":"Olivia Alge, Jonathan Gryak, Yi-Yang Hua, K. Najarian","doi":"10.1109/BIBM.2018.8621119","DOIUrl":null,"url":null,"abstract":"Meta-analysis of gene expression provides the opportunity to compare gene expression across different platforms. In this paper, we use a meta-analysis of RNA-seq data collected by the SJTU team and publicly available microarray data to build a Random Forest classification model. The Random Forest model had average accuracy of 74.1% for cross-validation in the training set and achieved accuracy of 80.0% on the testing set.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classifying Osteosarcoma Using Meta-Analysis of Gene Expression\",\"authors\":\"Olivia Alge, Jonathan Gryak, Yi-Yang Hua, K. Najarian\",\"doi\":\"10.1109/BIBM.2018.8621119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-analysis of gene expression provides the opportunity to compare gene expression across different platforms. In this paper, we use a meta-analysis of RNA-seq data collected by the SJTU team and publicly available microarray data to build a Random Forest classification model. The Random Forest model had average accuracy of 74.1% for cross-validation in the training set and achieved accuracy of 80.0% on the testing set.\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因表达的荟萃分析提供了比较不同平台上基因表达的机会。在本文中,我们使用上海交通大学团队收集的RNA-seq数据和公开的微阵列数据进行meta分析,构建随机森林分类模型。随机森林模型在训练集中交叉验证的平均准确率为74.1%,在测试集中交叉验证的平均准确率为80.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Osteosarcoma Using Meta-Analysis of Gene Expression
Meta-analysis of gene expression provides the opportunity to compare gene expression across different platforms. In this paper, we use a meta-analysis of RNA-seq data collected by the SJTU team and publicly available microarray data to build a Random Forest classification model. The Random Forest model had average accuracy of 74.1% for cross-validation in the training set and achieved accuracy of 80.0% on the testing set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信