MIC-GAN:使用条件生成对抗网络的多视图辅助图像补全

Gagan Kanojia, S. Raman
{"title":"MIC-GAN:使用条件生成对抗网络的多视图辅助图像补全","authors":"Gagan Kanojia, S. Raman","doi":"10.1109/NCC48643.2020.9056062","DOIUrl":null,"url":null,"abstract":"Consider a set of images of a scene captured from multiple views with some missing regions in each image. In this work, we propose a convolutional neural network (CNN) architecture which fills the missing regions in one image using the information present in the remaining images. The network takes the set of images and their corresponding binary maps as inputs and generates an image with the completed missing regions. The binary map indicates the missing regions present in the corresponding image. The network is trained using an adversarial approach and is observed to generate sharp output images qualitatively. We evaluate the performance of the proposed approach on the dataset extracted from the standard dataset, MVS-Synth.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MIC-GAN: Multi-view Assisted Image Completion Using Conditional Generative Adversarial Networks\",\"authors\":\"Gagan Kanojia, S. Raman\",\"doi\":\"10.1109/NCC48643.2020.9056062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a set of images of a scene captured from multiple views with some missing regions in each image. In this work, we propose a convolutional neural network (CNN) architecture which fills the missing regions in one image using the information present in the remaining images. The network takes the set of images and their corresponding binary maps as inputs and generates an image with the completed missing regions. The binary map indicates the missing regions present in the corresponding image. The network is trained using an adversarial approach and is observed to generate sharp output images qualitatively. We evaluate the performance of the proposed approach on the dataset extracted from the standard dataset, MVS-Synth.\",\"PeriodicalId\":183772,\"journal\":{\"name\":\"2020 National Conference on Communications (NCC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC48643.2020.9056062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑从多个视图中捕获的一组场景图像,每个图像中都有一些缺失的区域。在这项工作中,我们提出了一种卷积神经网络(CNN)架构,该架构使用剩余图像中的信息填充一张图像中的缺失区域。该网络将这组图像及其对应的二值映射作为输入,生成缺失区域完备的图像。二值图表示相应图像中存在的缺失区域。该网络使用对抗方法进行训练,并观察到其产生清晰的定性输出图像。我们在从标准数据集MVS-Synth提取的数据集上评估了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIC-GAN: Multi-view Assisted Image Completion Using Conditional Generative Adversarial Networks
Consider a set of images of a scene captured from multiple views with some missing regions in each image. In this work, we propose a convolutional neural network (CNN) architecture which fills the missing regions in one image using the information present in the remaining images. The network takes the set of images and their corresponding binary maps as inputs and generates an image with the completed missing regions. The binary map indicates the missing regions present in the corresponding image. The network is trained using an adversarial approach and is observed to generate sharp output images qualitatively. We evaluate the performance of the proposed approach on the dataset extracted from the standard dataset, MVS-Synth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信