求解无约束多模态数值问题的随机自适应遗传算法

Egidio Carvalho, O. Cortes, João Pedro Augusto Costa, A. Rau-Chaplin
{"title":"求解无约束多模态数值问题的随机自适应遗传算法","authors":"Egidio Carvalho, O. Cortes, João Pedro Augusto Costa, A. Rau-Chaplin","doi":"10.1109/EAIS.2016.7502503","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate an adaptive genetic algorithm which will be able to identify the best combination of crossover and mutation operators in execution time. The adaptation involves four crossover methods (simple, arithmetical, non-uniform arithmetical and linear) and three mutation mechanism (uniform, non-uniform and creep). We validate the algorithm using some multimodal benchmarks function well known in the literature. Furthermore, using the ANOVA method and the Tukey test we proved that, in general, the adaptive algorithm works better than the static choice of the operators. Results show that even though some operators dominate the other ones, the use of other operators in the earlier stages of the algorithm can affect the quality of the solutions positively. Moreover, the use of an adaptive algorithm tends to evolve solutions faster than the other ones.","PeriodicalId":303392,"journal":{"name":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A stochastic adaptive genetic algorithm for solving unconstrained multimodal numerical problems\",\"authors\":\"Egidio Carvalho, O. Cortes, João Pedro Augusto Costa, A. Rau-Chaplin\",\"doi\":\"10.1109/EAIS.2016.7502503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate an adaptive genetic algorithm which will be able to identify the best combination of crossover and mutation operators in execution time. The adaptation involves four crossover methods (simple, arithmetical, non-uniform arithmetical and linear) and three mutation mechanism (uniform, non-uniform and creep). We validate the algorithm using some multimodal benchmarks function well known in the literature. Furthermore, using the ANOVA method and the Tukey test we proved that, in general, the adaptive algorithm works better than the static choice of the operators. Results show that even though some operators dominate the other ones, the use of other operators in the earlier stages of the algorithm can affect the quality of the solutions positively. Moreover, the use of an adaptive algorithm tends to evolve solutions faster than the other ones.\",\"PeriodicalId\":303392,\"journal\":{\"name\":\"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2016.7502503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2016.7502503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了一种自适应遗传算法,该算法能够在执行时间内识别出交叉和变异算子的最佳组合。自适应包括四种交叉方法(简单、算术、非均匀算术和线性)和三种突变机制(均匀、非均匀和蠕变)。我们使用一些文献中众所周知的多模态基准函数来验证算法。此外,通过方差分析和Tukey检验,我们证明了自适应算法在一般情况下比静态选择算子的效果更好。结果表明,尽管某些算子占主导地位,但在算法的早期阶段使用其他算子会对解的质量产生积极影响。此外,使用自适应算法往往会比其他算法更快地进化出解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic adaptive genetic algorithm for solving unconstrained multimodal numerical problems
In this paper, we investigate an adaptive genetic algorithm which will be able to identify the best combination of crossover and mutation operators in execution time. The adaptation involves four crossover methods (simple, arithmetical, non-uniform arithmetical and linear) and three mutation mechanism (uniform, non-uniform and creep). We validate the algorithm using some multimodal benchmarks function well known in the literature. Furthermore, using the ANOVA method and the Tukey test we proved that, in general, the adaptive algorithm works better than the static choice of the operators. Results show that even though some operators dominate the other ones, the use of other operators in the earlier stages of the algorithm can affect the quality of the solutions positively. Moreover, the use of an adaptive algorithm tends to evolve solutions faster than the other ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信