Yang Bai, Jian Liu, Yingying Chen, Li Lu, Jiadi Yu
{"title":"海报:通过声学信号进行高通量通信","authors":"Yang Bai, Jian Liu, Yingying Chen, Li Lu, Jiadi Yu","doi":"10.1145/3300061.3343405","DOIUrl":null,"url":null,"abstract":"In recent decades, countless efforts have been put into the research and development of short-range wireless communication, which offers a convenient way for numerous applications (e.g., mobile payments, mobile advertisement). Regarding the design of acoustic communication, throughput and inaudibility are the most vital aspects, which greatly affect available applications that can be supported and their user experience. Existing studies on acoustic communication either use audible frequency band (e.g., <20kHz) to achieve a relatively high throughput or realize inaudibility using near-ultrasonic frequency band (e.g., 18-20kHz) which however can only achieve limited throughput. Leveraging the non-linearity of microphones, voice commands can be demodulated from the ultrasound signals, and further recognized by the speech recognition systems. In this poster, we design an acoustic communication system, which achieves high-throughput and inaudibility at the same time, and the highest throughput we achieve is over 17x higher than the state-of-the-art acoustic communication systems.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Poster: Inaudible High-throughput Communication Through Acoustic Signals\",\"authors\":\"Yang Bai, Jian Liu, Yingying Chen, Li Lu, Jiadi Yu\",\"doi\":\"10.1145/3300061.3343405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent decades, countless efforts have been put into the research and development of short-range wireless communication, which offers a convenient way for numerous applications (e.g., mobile payments, mobile advertisement). Regarding the design of acoustic communication, throughput and inaudibility are the most vital aspects, which greatly affect available applications that can be supported and their user experience. Existing studies on acoustic communication either use audible frequency band (e.g., <20kHz) to achieve a relatively high throughput or realize inaudibility using near-ultrasonic frequency band (e.g., 18-20kHz) which however can only achieve limited throughput. Leveraging the non-linearity of microphones, voice commands can be demodulated from the ultrasound signals, and further recognized by the speech recognition systems. In this poster, we design an acoustic communication system, which achieves high-throughput and inaudibility at the same time, and the highest throughput we achieve is over 17x higher than the state-of-the-art acoustic communication systems.\",\"PeriodicalId\":223523,\"journal\":{\"name\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3300061.3343405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3343405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poster: Inaudible High-throughput Communication Through Acoustic Signals
In recent decades, countless efforts have been put into the research and development of short-range wireless communication, which offers a convenient way for numerous applications (e.g., mobile payments, mobile advertisement). Regarding the design of acoustic communication, throughput and inaudibility are the most vital aspects, which greatly affect available applications that can be supported and their user experience. Existing studies on acoustic communication either use audible frequency band (e.g., <20kHz) to achieve a relatively high throughput or realize inaudibility using near-ultrasonic frequency band (e.g., 18-20kHz) which however can only achieve limited throughput. Leveraging the non-linearity of microphones, voice commands can be demodulated from the ultrasound signals, and further recognized by the speech recognition systems. In this poster, we design an acoustic communication system, which achieves high-throughput and inaudibility at the same time, and the highest throughput we achieve is over 17x higher than the state-of-the-art acoustic communication systems.