海报:通过声学信号进行高通量通信

Yang Bai, Jian Liu, Yingying Chen, Li Lu, Jiadi Yu
{"title":"海报:通过声学信号进行高通量通信","authors":"Yang Bai, Jian Liu, Yingying Chen, Li Lu, Jiadi Yu","doi":"10.1145/3300061.3343405","DOIUrl":null,"url":null,"abstract":"In recent decades, countless efforts have been put into the research and development of short-range wireless communication, which offers a convenient way for numerous applications (e.g., mobile payments, mobile advertisement). Regarding the design of acoustic communication, throughput and inaudibility are the most vital aspects, which greatly affect available applications that can be supported and their user experience. Existing studies on acoustic communication either use audible frequency band (e.g., <20kHz) to achieve a relatively high throughput or realize inaudibility using near-ultrasonic frequency band (e.g., 18-20kHz) which however can only achieve limited throughput. Leveraging the non-linearity of microphones, voice commands can be demodulated from the ultrasound signals, and further recognized by the speech recognition systems. In this poster, we design an acoustic communication system, which achieves high-throughput and inaudibility at the same time, and the highest throughput we achieve is over 17x higher than the state-of-the-art acoustic communication systems.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Poster: Inaudible High-throughput Communication Through Acoustic Signals\",\"authors\":\"Yang Bai, Jian Liu, Yingying Chen, Li Lu, Jiadi Yu\",\"doi\":\"10.1145/3300061.3343405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent decades, countless efforts have been put into the research and development of short-range wireless communication, which offers a convenient way for numerous applications (e.g., mobile payments, mobile advertisement). Regarding the design of acoustic communication, throughput and inaudibility are the most vital aspects, which greatly affect available applications that can be supported and their user experience. Existing studies on acoustic communication either use audible frequency band (e.g., <20kHz) to achieve a relatively high throughput or realize inaudibility using near-ultrasonic frequency band (e.g., 18-20kHz) which however can only achieve limited throughput. Leveraging the non-linearity of microphones, voice commands can be demodulated from the ultrasound signals, and further recognized by the speech recognition systems. In this poster, we design an acoustic communication system, which achieves high-throughput and inaudibility at the same time, and the highest throughput we achieve is over 17x higher than the state-of-the-art acoustic communication systems.\",\"PeriodicalId\":223523,\"journal\":{\"name\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3300061.3343405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3343405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近几十年来,人们对短距离无线通信的研究和发展付出了无数的努力,为众多应用(如移动支付、移动广告)提供了便利的方式。在声学通信的设计中,吞吐量和不可听性是最重要的方面,这极大地影响了可用的应用程序可以支持和他们的用户体验。现有的声学通信研究要么利用可听频带(如<20kHz)实现较高的吞吐量,要么利用近超声频带(如18-20kHz)实现不可听,但只能实现有限的吞吐量。利用麦克风的非线性特性,可以将超声波信号解调成语音命令,并进一步被语音识别系统识别。在这张海报中,我们设计了一个声学通信系统,它同时实现了高吞吐量和不清,我们实现的最高吞吐量比最先进的声学通信系统高出17倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Inaudible High-throughput Communication Through Acoustic Signals
In recent decades, countless efforts have been put into the research and development of short-range wireless communication, which offers a convenient way for numerous applications (e.g., mobile payments, mobile advertisement). Regarding the design of acoustic communication, throughput and inaudibility are the most vital aspects, which greatly affect available applications that can be supported and their user experience. Existing studies on acoustic communication either use audible frequency band (e.g., <20kHz) to achieve a relatively high throughput or realize inaudibility using near-ultrasonic frequency band (e.g., 18-20kHz) which however can only achieve limited throughput. Leveraging the non-linearity of microphones, voice commands can be demodulated from the ultrasound signals, and further recognized by the speech recognition systems. In this poster, we design an acoustic communication system, which achieves high-throughput and inaudibility at the same time, and the highest throughput we achieve is over 17x higher than the state-of-the-art acoustic communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信