使用可控Riesz小波的gpu加速纹理分析

A. Vizitiu, L. Itu, Ranveer Joyseeree, A. Depeursinge, H. Müller, C. Suciu
{"title":"使用可控Riesz小波的gpu加速纹理分析","authors":"A. Vizitiu, L. Itu, Ranveer Joyseeree, A. Depeursinge, H. Müller, C. Suciu","doi":"10.1109/PDP.2016.105","DOIUrl":null,"url":null,"abstract":"Visual pattern recognition is a key research topic in the field of image processing and computer vision. Texture analysis based on steerable Riesz wavelets is powerful, but requires computing pixel-wise operations resulting in a run time in the order of days when large volumes of data are processed. To overcome this limitation we propose a Graphics Processing Unit (GPU) based solution. A standard CPU version is used as starting point for the development of baseline GPU versions. To further increase the performance, and to overcome compute and memory limitations we apply a series of optimization techniques, leading to five versions in total. The best performing GPU solution ensures a speed-up of 93× for the parallelized section of the application and of 29.6× for the entire application. Furthermore, we show that a higher Riesz order and/or a higher image resolution further increases the speed-up.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GPU-Accelerated Texture Analysis Using Steerable Riesz Wavelets\",\"authors\":\"A. Vizitiu, L. Itu, Ranveer Joyseeree, A. Depeursinge, H. Müller, C. Suciu\",\"doi\":\"10.1109/PDP.2016.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual pattern recognition is a key research topic in the field of image processing and computer vision. Texture analysis based on steerable Riesz wavelets is powerful, but requires computing pixel-wise operations resulting in a run time in the order of days when large volumes of data are processed. To overcome this limitation we propose a Graphics Processing Unit (GPU) based solution. A standard CPU version is used as starting point for the development of baseline GPU versions. To further increase the performance, and to overcome compute and memory limitations we apply a series of optimization techniques, leading to five versions in total. The best performing GPU solution ensures a speed-up of 93× for the parallelized section of the application and of 29.6× for the entire application. Furthermore, we show that a higher Riesz order and/or a higher image resolution further increases the speed-up.\",\"PeriodicalId\":192273,\"journal\":{\"name\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2016.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

视觉模式识别是图像处理和计算机视觉领域的一个重要研究课题。基于可控Riesz小波的纹理分析功能强大,但需要计算像素级操作,导致处理大量数据的运行时间以天为单位。为了克服这一限制,我们提出了一种基于图形处理单元(GPU)的解决方案。CPU的标准版本作为开发GPU基线版本的起点。为了进一步提高性能,克服计算和内存限制,我们应用了一系列优化技术,总共产生了五个版本。性能最好的GPU解决方案可确保应用程序并行化部分的速度提高93倍,整个应用程序的速度提高29.6倍。此外,我们表明,更高的Riesz阶和/或更高的图像分辨率进一步提高了加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-Accelerated Texture Analysis Using Steerable Riesz Wavelets
Visual pattern recognition is a key research topic in the field of image processing and computer vision. Texture analysis based on steerable Riesz wavelets is powerful, but requires computing pixel-wise operations resulting in a run time in the order of days when large volumes of data are processed. To overcome this limitation we propose a Graphics Processing Unit (GPU) based solution. A standard CPU version is used as starting point for the development of baseline GPU versions. To further increase the performance, and to overcome compute and memory limitations we apply a series of optimization techniques, leading to five versions in total. The best performing GPU solution ensures a speed-up of 93× for the parallelized section of the application and of 29.6× for the entire application. Furthermore, we show that a higher Riesz order and/or a higher image resolution further increases the speed-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信