人脸检测使用神经网络和图像分解

H. El-Bakry
{"title":"人脸检测使用神经网络和图像分解","authors":"H. El-Bakry","doi":"10.1109/IJCNN.2002.1005620","DOIUrl":null,"url":null,"abstract":"An approach to reducing the computation time taken by fast neural nets for the searching process is presented. The principle of the divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately using a fast neural network Compared to conventional and fast neural networks, experimental results show that a speed up ratio is achieved when applying this technique to locate human faces automatically in cluttered scenes. Furthermore, faster face detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of fast neural networks. Moreover, the problem of sub-image centering and normalization in the Fourier space is solved.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Face detection using neural networks and image decomposition\",\"authors\":\"H. El-Bakry\",\"doi\":\"10.1109/IJCNN.2002.1005620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach to reducing the computation time taken by fast neural nets for the searching process is presented. The principle of the divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately using a fast neural network Compared to conventional and fast neural networks, experimental results show that a speed up ratio is achieved when applying this technique to locate human faces automatically in cluttered scenes. Furthermore, faster face detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of fast neural networks. Moreover, the problem of sub-image centering and normalization in the Fourier space is solved.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1005620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

提出了一种减少快速神经网络在搜索过程中计算时间的方法。通过图像分解,应用分治策略的原理。将每幅图像分割成小尺寸的子图像,然后使用快速神经网络对每幅图像进行单独测试。实验结果表明,与传统和快速神经网络相比,应用该技术在混乱场景中自动定位人脸时取得了更高的速度比。此外,采用并行处理技术,使用相同数量的快速神经网络同时测试得到的子图像,从而获得更快的人脸检测速度。此外,还解决了子图像在傅里叶空间中的定心和归一化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face detection using neural networks and image decomposition
An approach to reducing the computation time taken by fast neural nets for the searching process is presented. The principle of the divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately using a fast neural network Compared to conventional and fast neural networks, experimental results show that a speed up ratio is achieved when applying this technique to locate human faces automatically in cluttered scenes. Furthermore, faster face detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of fast neural networks. Moreover, the problem of sub-image centering and normalization in the Fourier space is solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信