艾里结构与拓扑递归的辛几何

M. Kontsevich, Y. Soibelman
{"title":"艾里结构与拓扑递归的辛几何","authors":"M. Kontsevich, Y. Soibelman","doi":"10.1090/PSPUM/100/01765","DOIUrl":null,"url":null,"abstract":"We propose a new approach to the topological recursion of Eynard-Orantin based on the notion of Airy structure, which we introduce in the paper. We explain why Airy structure is a more fundamental object than the one of the spectral curve. We explain how the concept of quantization of Airy structure leads naturally to the formulas of topological recursion as well as their generalizations. The notion of spectral curve is also considered in a more general framework of Poisson surfaces endowed with foliation. We explain how the deformation theory of spectral curves is related to Airy structures. Few other topics (e.g. the Holomorphic Anomaly Equation) are also discussed from the general point of view of Airy structures.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Airy structures and symplectic geometry of\\n topological recursion\",\"authors\":\"M. Kontsevich, Y. Soibelman\",\"doi\":\"10.1090/PSPUM/100/01765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new approach to the topological recursion of Eynard-Orantin based on the notion of Airy structure, which we introduce in the paper. We explain why Airy structure is a more fundamental object than the one of the spectral curve. We explain how the concept of quantization of Airy structure leads naturally to the formulas of topological recursion as well as their generalizations. The notion of spectral curve is also considered in a more general framework of Poisson surfaces endowed with foliation. We explain how the deformation theory of spectral curves is related to Airy structures. Few other topics (e.g. the Holomorphic Anomaly Equation) are also discussed from the general point of view of Airy structures.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/100/01765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/100/01765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

本文基于Airy结构的概念,提出了一种求解Eynard-Orantin拓扑递归的新方法。我们解释了为什么艾里结构是一个比光谱曲线更基本的物体。我们解释了艾里结构的量化概念如何自然地导致拓扑递归公式及其推广。谱曲线的概念也在具有叶理的泊松曲面的更一般的框架中被考虑。我们解释了光谱曲线的变形理论与艾里结构的关系。此外,本文还从艾里结构的一般观点出发讨论了其他一些问题(如全纯异常方程)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Airy structures and symplectic geometry of topological recursion
We propose a new approach to the topological recursion of Eynard-Orantin based on the notion of Airy structure, which we introduce in the paper. We explain why Airy structure is a more fundamental object than the one of the spectral curve. We explain how the concept of quantization of Airy structure leads naturally to the formulas of topological recursion as well as their generalizations. The notion of spectral curve is also considered in a more general framework of Poisson surfaces endowed with foliation. We explain how the deformation theory of spectral curves is related to Airy structures. Few other topics (e.g. the Holomorphic Anomaly Equation) are also discussed from the general point of view of Airy structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信