{"title":"艾里结构与拓扑递归的辛几何","authors":"M. Kontsevich, Y. Soibelman","doi":"10.1090/PSPUM/100/01765","DOIUrl":null,"url":null,"abstract":"We propose a new approach to the topological recursion of Eynard-Orantin based on the notion of Airy structure, which we introduce in the paper. We explain why Airy structure is a more fundamental object than the one of the spectral curve. We explain how the concept of quantization of Airy structure leads naturally to the formulas of topological recursion as well as their generalizations. The notion of spectral curve is also considered in a more general framework of Poisson surfaces endowed with foliation. We explain how the deformation theory of spectral curves is related to Airy structures. Few other topics (e.g. the Holomorphic Anomaly Equation) are also discussed from the general point of view of Airy structures.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Airy structures and symplectic geometry of\\n topological recursion\",\"authors\":\"M. Kontsevich, Y. Soibelman\",\"doi\":\"10.1090/PSPUM/100/01765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new approach to the topological recursion of Eynard-Orantin based on the notion of Airy structure, which we introduce in the paper. We explain why Airy structure is a more fundamental object than the one of the spectral curve. We explain how the concept of quantization of Airy structure leads naturally to the formulas of topological recursion as well as their generalizations. The notion of spectral curve is also considered in a more general framework of Poisson surfaces endowed with foliation. We explain how the deformation theory of spectral curves is related to Airy structures. Few other topics (e.g. the Holomorphic Anomaly Equation) are also discussed from the general point of view of Airy structures.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/100/01765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/100/01765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Airy structures and symplectic geometry of
topological recursion
We propose a new approach to the topological recursion of Eynard-Orantin based on the notion of Airy structure, which we introduce in the paper. We explain why Airy structure is a more fundamental object than the one of the spectral curve. We explain how the concept of quantization of Airy structure leads naturally to the formulas of topological recursion as well as their generalizations. The notion of spectral curve is also considered in a more general framework of Poisson surfaces endowed with foliation. We explain how the deformation theory of spectral curves is related to Airy structures. Few other topics (e.g. the Holomorphic Anomaly Equation) are also discussed from the general point of view of Airy structures.