{"title":"基于丰富原型生成和循环预测增强的少镜头分割","authors":"Hongsheng Wang, Xiaoqi Zhao, Youwei Pang, Jinqing Qi","doi":"10.48550/arXiv.2210.00765","DOIUrl":null,"url":null,"abstract":". Prototype learning and decoder construction are the keys for few-shot segmentation. However, existing methods use only a single prototype generation mode, which can not cope with the intractable problem of objects with various scales. Moreover, the one-way forward propagation adopted by previous methods may cause information dilution from registered features during the decoding process. In this research, we propose a rich prototype generation module (RPGM) and a recurrent prediction enhancement module (RPEM) to reinforce the prototype learning paradigm and build a unified memory-augmented decoder for few-shot segmentation, respectively. Specifically, the RPGM combines superpixel and K-means clustering to generate rich prototype features with complementary scale relationships and adapt the scale gap between support and query images. The RPEM utilizes the recurrent mechanism to design a round-way propagation decoder. In this way, registered features can provide object-aware information continuously. Experiments show that our method consistently outperforms other competitors on two popular benchmarks PASCAL-5 i and COCO-20 i . role in few-shot segmentation. The prototype represents only object-related features and does not contain","PeriodicalId":420492,"journal":{"name":"Chinese Conference on Pattern Recognition and Computer Vision","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Few-Shot Segmentation via Rich Prototype Generation and Recurrent Prediction Enhancement\",\"authors\":\"Hongsheng Wang, Xiaoqi Zhao, Youwei Pang, Jinqing Qi\",\"doi\":\"10.48550/arXiv.2210.00765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Prototype learning and decoder construction are the keys for few-shot segmentation. However, existing methods use only a single prototype generation mode, which can not cope with the intractable problem of objects with various scales. Moreover, the one-way forward propagation adopted by previous methods may cause information dilution from registered features during the decoding process. In this research, we propose a rich prototype generation module (RPGM) and a recurrent prediction enhancement module (RPEM) to reinforce the prototype learning paradigm and build a unified memory-augmented decoder for few-shot segmentation, respectively. Specifically, the RPGM combines superpixel and K-means clustering to generate rich prototype features with complementary scale relationships and adapt the scale gap between support and query images. The RPEM utilizes the recurrent mechanism to design a round-way propagation decoder. In this way, registered features can provide object-aware information continuously. Experiments show that our method consistently outperforms other competitors on two popular benchmarks PASCAL-5 i and COCO-20 i . role in few-shot segmentation. The prototype represents only object-related features and does not contain\",\"PeriodicalId\":420492,\"journal\":{\"name\":\"Chinese Conference on Pattern Recognition and Computer Vision\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Conference on Pattern Recognition and Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.00765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Conference on Pattern Recognition and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.00765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Few-Shot Segmentation via Rich Prototype Generation and Recurrent Prediction Enhancement
. Prototype learning and decoder construction are the keys for few-shot segmentation. However, existing methods use only a single prototype generation mode, which can not cope with the intractable problem of objects with various scales. Moreover, the one-way forward propagation adopted by previous methods may cause information dilution from registered features during the decoding process. In this research, we propose a rich prototype generation module (RPGM) and a recurrent prediction enhancement module (RPEM) to reinforce the prototype learning paradigm and build a unified memory-augmented decoder for few-shot segmentation, respectively. Specifically, the RPGM combines superpixel and K-means clustering to generate rich prototype features with complementary scale relationships and adapt the scale gap between support and query images. The RPEM utilizes the recurrent mechanism to design a round-way propagation decoder. In this way, registered features can provide object-aware information continuously. Experiments show that our method consistently outperforms other competitors on two popular benchmarks PASCAL-5 i and COCO-20 i . role in few-shot segmentation. The prototype represents only object-related features and does not contain