S2:用于资源受限物联网设备重编程的小增量和小内存差分算法

Borui Li, Chenghao Tong, Yi Gao, Wei Dong
{"title":"S2:用于资源受限物联网设备重编程的小增量和小内存差分算法","authors":"Borui Li, Chenghao Tong, Yi Gao, Wei Dong","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484473","DOIUrl":null,"url":null,"abstract":"Incremental reprogramming is one of the key features for managing resource-constrained IoT devices. Nevertheless, existing approaches fall flat in RAM and flask usage due to the increasing firmware size of contemporary IoT applications. In this paper, we advocate S2, a differencing algorithm for reprogramming resource-constrained IoT devices. S2 achieves small memory and flash footprints by leveraging a topological sort based in-place reconstruction mechanism and stream reconstruction technique, as well as smaller delta size by a prediction-based encoding. Evaluation shows that S2 uses 33.3% less RAM while reducing at most 42.5% delta size than state-of-the-arts.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"1 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"S2: a Small Delta and Small Memory Differencing Algorithm for Reprogramming Resource-constrained IoT Devices\",\"authors\":\"Borui Li, Chenghao Tong, Yi Gao, Wei Dong\",\"doi\":\"10.1109/INFOCOMWKSHPS51825.2021.9484473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incremental reprogramming is one of the key features for managing resource-constrained IoT devices. Nevertheless, existing approaches fall flat in RAM and flask usage due to the increasing firmware size of contemporary IoT applications. In this paper, we advocate S2, a differencing algorithm for reprogramming resource-constrained IoT devices. S2 achieves small memory and flash footprints by leveraging a topological sort based in-place reconstruction mechanism and stream reconstruction technique, as well as smaller delta size by a prediction-based encoding. Evaluation shows that S2 uses 33.3% less RAM while reducing at most 42.5% delta size than state-of-the-arts.\",\"PeriodicalId\":109588,\"journal\":{\"name\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"1 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

增量重编程是管理资源受限的物联网设备的关键功能之一。然而,由于当代物联网应用的固件尺寸不断增加,现有方法在RAM和烧瓶使用方面表现平平。在本文中,我们提倡S2,一种用于资源受限物联网设备重编程的差分算法。S2通过利用基于拓扑排序的就地重建机制和流重建技术实现了较小的内存和闪存占用,并通过基于预测的编码实现了较小的增量大小。评估表明,与最先进的系统相比,S2使用的RAM减少了33.3%,而增量大小最多减少了42.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S2: a Small Delta and Small Memory Differencing Algorithm for Reprogramming Resource-constrained IoT Devices
Incremental reprogramming is one of the key features for managing resource-constrained IoT devices. Nevertheless, existing approaches fall flat in RAM and flask usage due to the increasing firmware size of contemporary IoT applications. In this paper, we advocate S2, a differencing algorithm for reprogramming resource-constrained IoT devices. S2 achieves small memory and flash footprints by leveraging a topological sort based in-place reconstruction mechanism and stream reconstruction technique, as well as smaller delta size by a prediction-based encoding. Evaluation shows that S2 uses 33.3% less RAM while reducing at most 42.5% delta size than state-of-the-arts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信