使用随机漫步从混合属性数据集生成随机向量

A. Skabar
{"title":"使用随机漫步从混合属性数据集生成随机向量","authors":"A. Skabar","doi":"10.1109/WSC.2016.7822168","DOIUrl":null,"url":null,"abstract":"Given data in a matrix X in which rows represent vectors and columns comprise a mix of discrete and continuous variables, the method presented in this paper can be used to generate random vectors whose elements display the same marginal distributions and correlations as the variables in X. The data is represented as a bipartite graph consisting of object nodes (representing vectors) and attribute value nodes. Random walk can be used to estimate the distribution of a target variable conditioned on the remaining variables, allowing a random value to be drawn for that variable. This leads to the use of Gibbs sampling to generate entire vectors. Unlike conventional methods, the proposed method requires neither the joint distribution nor the correlations to be specified, learned, or modeled explicitly in any way. Application to the Australian Credit dataset demonstrates the feasibility of the approach in generating random vectors on challenging real-world datasets.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Random vector generation from mixed-attribute datasets using random walk\",\"authors\":\"A. Skabar\",\"doi\":\"10.1109/WSC.2016.7822168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given data in a matrix X in which rows represent vectors and columns comprise a mix of discrete and continuous variables, the method presented in this paper can be used to generate random vectors whose elements display the same marginal distributions and correlations as the variables in X. The data is represented as a bipartite graph consisting of object nodes (representing vectors) and attribute value nodes. Random walk can be used to estimate the distribution of a target variable conditioned on the remaining variables, allowing a random value to be drawn for that variable. This leads to the use of Gibbs sampling to generate entire vectors. Unlike conventional methods, the proposed method requires neither the joint distribution nor the correlations to be specified, learned, or modeled explicitly in any way. Application to the Australian Credit dataset demonstrates the feasibility of the approach in generating random vectors on challenging real-world datasets.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2016.7822168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给定矩阵X中的数据,其中行表示向量,列由离散变量和连续变量混合组成,本文提出的方法可以生成随机向量,其元素与X中的变量具有相同的边际分布和相关性。数据表示为对象节点(表示向量)和属性值节点组成的二部图。随机游走可以用来估计目标变量在剩余变量条件下的分布,允许为该变量绘制随机值。这导致使用吉布斯采样来生成整个向量。与传统方法不同,所提出的方法既不需要指定、学习联合分布,也不需要以任何方式显式建模。对澳大利亚信用数据集的应用证明了该方法在具有挑战性的现实世界数据集上生成随机向量的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random vector generation from mixed-attribute datasets using random walk
Given data in a matrix X in which rows represent vectors and columns comprise a mix of discrete and continuous variables, the method presented in this paper can be used to generate random vectors whose elements display the same marginal distributions and correlations as the variables in X. The data is represented as a bipartite graph consisting of object nodes (representing vectors) and attribute value nodes. Random walk can be used to estimate the distribution of a target variable conditioned on the remaining variables, allowing a random value to be drawn for that variable. This leads to the use of Gibbs sampling to generate entire vectors. Unlike conventional methods, the proposed method requires neither the joint distribution nor the correlations to be specified, learned, or modeled explicitly in any way. Application to the Australian Credit dataset demonstrates the feasibility of the approach in generating random vectors on challenging real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信