{"title":"树中的最小2支配集","authors":"Marcin Krzywkowski","doi":"10.1051/ita/2013036","DOIUrl":null,"url":null,"abstract":"We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time 𝒪(1.3248n ). This implies that every tree has at most 1.3248n minimal 2-dominating sets. We also show that this bound is tight.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Minimal 2-dominating sets in trees\",\"authors\":\"Marcin Krzywkowski\",\"doi\":\"10.1051/ita/2013036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time 𝒪(1.3248n ). This implies that every tree has at most 1.3248n minimal 2-dominating sets. We also show that this bound is tight.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2013036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2013036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time 𝒪(1.3248n ). This implies that every tree has at most 1.3248n minimal 2-dominating sets. We also show that this bound is tight.