医学图像的多尺度上下文感知分割网络

Qing Li, Yuqing Zhu
{"title":"医学图像的多尺度上下文感知分割网络","authors":"Qing Li, Yuqing Zhu","doi":"10.1117/12.2667684","DOIUrl":null,"url":null,"abstract":"Aiming at the problems that the method based on U-shaped network for medical image segmentation cannot capture the long-range dependencies and could lose some detail information, a multi-scale context-aware segmentation network for medical images is proposed. The model extracts the last three layer features of the encoder, and then introduces a global circular convolution transformer module to solve the problem of long-range dependencies capturing by modeling the global context information. Then, an attention guidance module is introduced to fuse features of different scales, so as to solve the problem of losing details while reducing the introduction of noise information in the low level features. The experimental performance on Synapse multi-organ segmentation datasets indicates that the model produces more precise segmentation results.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale context-aware segmentation network for medical images\",\"authors\":\"Qing Li, Yuqing Zhu\",\"doi\":\"10.1117/12.2667684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems that the method based on U-shaped network for medical image segmentation cannot capture the long-range dependencies and could lose some detail information, a multi-scale context-aware segmentation network for medical images is proposed. The model extracts the last three layer features of the encoder, and then introduces a global circular convolution transformer module to solve the problem of long-range dependencies capturing by modeling the global context information. Then, an attention guidance module is introduced to fuse features of different scales, so as to solve the problem of losing details while reducing the introduction of noise information in the low level features. The experimental performance on Synapse multi-organ segmentation datasets indicates that the model produces more precise segmentation results.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对基于u型网络的医学图像分割方法无法捕捉到图像间的长期依赖关系和丢失部分细节信息的问题,提出了一种多尺度的医学图像上下文感知分割网络。该模型提取编码器的后三层特征,然后引入全局圆形卷积变压器模块,通过对全局上下文信息建模来解决远程依赖关系捕获问题。然后,引入注意力引导模块,融合不同尺度的特征,在减少低尺度特征中噪声信息引入的同时,解决了细节丢失的问题。在Synapse多器官分割数据集上的实验结果表明,该模型的分割结果更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale context-aware segmentation network for medical images
Aiming at the problems that the method based on U-shaped network for medical image segmentation cannot capture the long-range dependencies and could lose some detail information, a multi-scale context-aware segmentation network for medical images is proposed. The model extracts the last three layer features of the encoder, and then introduces a global circular convolution transformer module to solve the problem of long-range dependencies capturing by modeling the global context information. Then, an attention guidance module is introduced to fuse features of different scales, so as to solve the problem of losing details while reducing the introduction of noise information in the low level features. The experimental performance on Synapse multi-organ segmentation datasets indicates that the model produces more precise segmentation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信