命名实体识别的全局跨度选择

Urchade Zaratiana, Niama Elkhbir, Pierre Holat, Nadi Tomeh, Thierry Charnois
{"title":"命名实体识别的全局跨度选择","authors":"Urchade Zaratiana, Niama Elkhbir, Pierre Holat, Nadi Tomeh, Thierry Charnois","doi":"10.18653/v1/2022.umios-1.2","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) is an important task in Natural Language Processing with applications in many domains. In this paper, we describe a novel approach to named entity recognition, in which we output a set of spans (i.e., segmentations) by maximizing a global score. During training, we optimize our model by maximizing the probability of the gold segmentation. During inference, we use dynamic programming to select the best segmentation under a linear time complexity. We prove that our approach outperforms CRF and semi-CRF models for Named Entity Recognition. We will make our code publicly available.","PeriodicalId":360854,"journal":{"name":"Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global Span Selection for Named Entity Recognition\",\"authors\":\"Urchade Zaratiana, Niama Elkhbir, Pierre Holat, Nadi Tomeh, Thierry Charnois\",\"doi\":\"10.18653/v1/2022.umios-1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named Entity Recognition (NER) is an important task in Natural Language Processing with applications in many domains. In this paper, we describe a novel approach to named entity recognition, in which we output a set of spans (i.e., segmentations) by maximizing a global score. During training, we optimize our model by maximizing the probability of the gold segmentation. During inference, we use dynamic programming to select the best segmentation under a linear time complexity. We prove that our approach outperforms CRF and semi-CRF models for Named Entity Recognition. We will make our code publicly available.\",\"PeriodicalId\":360854,\"journal\":{\"name\":\"Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.umios-1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.umios-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

命名实体识别(NER)是自然语言处理中的一项重要任务,在许多领域都有应用。在本文中,我们描述了一种新的命名实体识别方法,其中我们通过最大化全局分数来输出一组跨度(即分割)。在训练过程中,我们通过最大化黄金分割的概率来优化模型。在推理过程中,我们使用动态规划来选择线性时间复杂度下的最佳分割。我们证明了我们的方法优于命名实体识别的CRF和半CRF模型。我们将公开我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Span Selection for Named Entity Recognition
Named Entity Recognition (NER) is an important task in Natural Language Processing with applications in many domains. In this paper, we describe a novel approach to named entity recognition, in which we output a set of spans (i.e., segmentations) by maximizing a global score. During training, we optimize our model by maximizing the probability of the gold segmentation. During inference, we use dynamic programming to select the best segmentation under a linear time complexity. We prove that our approach outperforms CRF and semi-CRF models for Named Entity Recognition. We will make our code publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信