三属光滑非超椭圆曲线堆的积分Chow环

Andrea Di Lorenzo, Damiano Fulghesu, Angelo Vistoli
{"title":"三属光滑非超椭圆曲线堆的积分Chow环","authors":"Andrea Di Lorenzo, Damiano Fulghesu, Angelo Vistoli","doi":"10.1090/tran/8354","DOIUrl":null,"url":null,"abstract":"We compute the integral Chow ring of the stack of smooth, non-hyperelliptic curves of genus three. We obtain this result by computing the integral Chow ring of the stack of smooth plane quartics, by means of equivariant intersection theory.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three\",\"authors\":\"Andrea Di Lorenzo, Damiano Fulghesu, Angelo Vistoli\",\"doi\":\"10.1090/tran/8354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the integral Chow ring of the stack of smooth, non-hyperelliptic curves of genus three. We obtain this result by computing the integral Chow ring of the stack of smooth plane quartics, by means of equivariant intersection theory.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们计算了光滑非超椭圆曲线堆的积分周环。利用等变交理论,计算光滑平面四分位叠的积分周环,得到了这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three
We compute the integral Chow ring of the stack of smooth, non-hyperelliptic curves of genus three. We obtain this result by computing the integral Chow ring of the stack of smooth plane quartics, by means of equivariant intersection theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信