Andrea Di Lorenzo, Damiano Fulghesu, Angelo Vistoli
{"title":"三属光滑非超椭圆曲线堆的积分Chow环","authors":"Andrea Di Lorenzo, Damiano Fulghesu, Angelo Vistoli","doi":"10.1090/tran/8354","DOIUrl":null,"url":null,"abstract":"We compute the integral Chow ring of the stack of smooth, non-hyperelliptic curves of genus three. We obtain this result by computing the integral Chow ring of the stack of smooth plane quartics, by means of equivariant intersection theory.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three\",\"authors\":\"Andrea Di Lorenzo, Damiano Fulghesu, Angelo Vistoli\",\"doi\":\"10.1090/tran/8354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the integral Chow ring of the stack of smooth, non-hyperelliptic curves of genus three. We obtain this result by computing the integral Chow ring of the stack of smooth plane quartics, by means of equivariant intersection theory.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three
We compute the integral Chow ring of the stack of smooth, non-hyperelliptic curves of genus three. We obtain this result by computing the integral Chow ring of the stack of smooth plane quartics, by means of equivariant intersection theory.