{"title":"基于短电流脉冲的光伏发电系统自适应最大功率点跟踪","authors":"T. Noguchi, S. Togashi, R. Nakamoto","doi":"10.1109/ISIE.2000.930504","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel maximum-power-point tracking (MPPT) method with a simple algorithm for photovoltaic (PV) power generation systems. The method is based on the use of a short-current pulse of the PV array to determine an optimum operating current for the maximum output power and completely differs from conventional hill-climbing based methods. In the proposed system, the optimum operating current is instantaneously determined by taking a product of the short-current pulse amplitude and a parameter k because the optimum operating current is exactly proportional to the short current under various conditions of illuminance and temperature. Also, the system offers an identification function of k by means of fast power-vs.-current curve scanning, which makes the short-current pulse based MPPT adaptive to disturbances such as shades partially covering the PV panels. The above adaptive MPPT algorithm has been adopted to a current-controlled boost chopper and a multiple power converter system composed by PV-chopper modules. Various operating characteristics have been examined, and excellent MPPT performance has been confirmed through the experimental tests.","PeriodicalId":298625,"journal":{"name":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":"{\"title\":\"Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system\",\"authors\":\"T. Noguchi, S. Togashi, R. Nakamoto\",\"doi\":\"10.1109/ISIE.2000.930504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel maximum-power-point tracking (MPPT) method with a simple algorithm for photovoltaic (PV) power generation systems. The method is based on the use of a short-current pulse of the PV array to determine an optimum operating current for the maximum output power and completely differs from conventional hill-climbing based methods. In the proposed system, the optimum operating current is instantaneously determined by taking a product of the short-current pulse amplitude and a parameter k because the optimum operating current is exactly proportional to the short current under various conditions of illuminance and temperature. Also, the system offers an identification function of k by means of fast power-vs.-current curve scanning, which makes the short-current pulse based MPPT adaptive to disturbances such as shades partially covering the PV panels. The above adaptive MPPT algorithm has been adopted to a current-controlled boost chopper and a multiple power converter system composed by PV-chopper modules. Various operating characteristics have been examined, and excellent MPPT performance has been confirmed through the experimental tests.\",\"PeriodicalId\":298625,\"journal\":{\"name\":\"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2000.930504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2000.930504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system
This paper proposes a novel maximum-power-point tracking (MPPT) method with a simple algorithm for photovoltaic (PV) power generation systems. The method is based on the use of a short-current pulse of the PV array to determine an optimum operating current for the maximum output power and completely differs from conventional hill-climbing based methods. In the proposed system, the optimum operating current is instantaneously determined by taking a product of the short-current pulse amplitude and a parameter k because the optimum operating current is exactly proportional to the short current under various conditions of illuminance and temperature. Also, the system offers an identification function of k by means of fast power-vs.-current curve scanning, which makes the short-current pulse based MPPT adaptive to disturbances such as shades partially covering the PV panels. The above adaptive MPPT algorithm has been adopted to a current-controlled boost chopper and a multiple power converter system composed by PV-chopper modules. Various operating characteristics have been examined, and excellent MPPT performance has been confirmed through the experimental tests.