{"title":"多时相航空高光谱图像变化检测的无监督线性解混","authors":"Q. Du, L. Wasson, R. King","doi":"10.1109/AMTRSI.2005.1469856","DOIUrl":null,"url":null,"abstract":"The linear unmixing technique is investigated for change detection in multitemporal airborne hyperspectral imagery. Several practical implementation issues are discussed. The preliminary study using the CASI data shows its feasibility when the noise level is moderate and some prior information about endmembers is known. Keywords— linear mixture model; unsupervised linear unmixing; change detection; multitemporal airborne hyperspectral imagery.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery\",\"authors\":\"Q. Du, L. Wasson, R. King\",\"doi\":\"10.1109/AMTRSI.2005.1469856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear unmixing technique is investigated for change detection in multitemporal airborne hyperspectral imagery. Several practical implementation issues are discussed. The preliminary study using the CASI data shows its feasibility when the noise level is moderate and some prior information about endmembers is known. Keywords— linear mixture model; unsupervised linear unmixing; change detection; multitemporal airborne hyperspectral imagery.\",\"PeriodicalId\":302923,\"journal\":{\"name\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMTRSI.2005.1469856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery
The linear unmixing technique is investigated for change detection in multitemporal airborne hyperspectral imagery. Several practical implementation issues are discussed. The preliminary study using the CASI data shows its feasibility when the noise level is moderate and some prior information about endmembers is known. Keywords— linear mixture model; unsupervised linear unmixing; change detection; multitemporal airborne hyperspectral imagery.