多时相航空高光谱图像变化检测的无监督线性解混

Q. Du, L. Wasson, R. King
{"title":"多时相航空高光谱图像变化检测的无监督线性解混","authors":"Q. Du, L. Wasson, R. King","doi":"10.1109/AMTRSI.2005.1469856","DOIUrl":null,"url":null,"abstract":"The linear unmixing technique is investigated for change detection in multitemporal airborne hyperspectral imagery. Several practical implementation issues are discussed. The preliminary study using the CASI data shows its feasibility when the noise level is moderate and some prior information about endmembers is known. Keywords— linear mixture model; unsupervised linear unmixing; change detection; multitemporal airborne hyperspectral imagery.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery\",\"authors\":\"Q. Du, L. Wasson, R. King\",\"doi\":\"10.1109/AMTRSI.2005.1469856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear unmixing technique is investigated for change detection in multitemporal airborne hyperspectral imagery. Several practical implementation issues are discussed. The preliminary study using the CASI data shows its feasibility when the noise level is moderate and some prior information about endmembers is known. Keywords— linear mixture model; unsupervised linear unmixing; change detection; multitemporal airborne hyperspectral imagery.\",\"PeriodicalId\":302923,\"journal\":{\"name\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMTRSI.2005.1469856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

研究了多时相航空高光谱图像的线性解混变化检测技术。讨论了几个实际实施问题。利用CASI数据进行的初步研究表明,在噪声水平适中、端元先验信息已知的情况下,该方法是可行的。关键词:线性混合模型;无监督线性分解;变化检测;多时相航空高光谱图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery
The linear unmixing technique is investigated for change detection in multitemporal airborne hyperspectral imagery. Several practical implementation issues are discussed. The preliminary study using the CASI data shows its feasibility when the noise level is moderate and some prior information about endmembers is known. Keywords— linear mixture model; unsupervised linear unmixing; change detection; multitemporal airborne hyperspectral imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信