基于CRF的空间原型区域分类

M. Jahangiri, D. Heesch, M. Petrou
{"title":"基于CRF的空间原型区域分类","authors":"M. Jahangiri, D. Heesch, M. Petrou","doi":"10.1109/DICTA.2010.92","DOIUrl":null,"url":null,"abstract":"This paper proposes a probabilistic model using conditional random field (CRF) for region labelling that encodes and exploits the spatial context of a region. Potential functions for a region depend on a combination of the labels of neighbouring regions as well as their relative location, and a set of typical neighbourhood configurations or prototypes. These are obtained by clustering neighbourhood configurations obtained from a set of annotated images. Inference is achieved by minimising the cost function defined over the CRF model using standard Markov Chain Monte Carlo (MCMC) technique. We validate our approach on a dataset of hand segmented and labelled images of buildings and show that the model outperforms similar such models that utilise either only contextual information or only non-contextual measures.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CRF Based Region Classification Using Spatial Prototypes\",\"authors\":\"M. Jahangiri, D. Heesch, M. Petrou\",\"doi\":\"10.1109/DICTA.2010.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a probabilistic model using conditional random field (CRF) for region labelling that encodes and exploits the spatial context of a region. Potential functions for a region depend on a combination of the labels of neighbouring regions as well as their relative location, and a set of typical neighbourhood configurations or prototypes. These are obtained by clustering neighbourhood configurations obtained from a set of annotated images. Inference is achieved by minimising the cost function defined over the CRF model using standard Markov Chain Monte Carlo (MCMC) technique. We validate our approach on a dataset of hand segmented and labelled images of buildings and show that the model outperforms similar such models that utilise either only contextual information or only non-contextual measures.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用条件随机场(CRF)进行区域标记的概率模型,该模型对区域的空间上下文进行编码和利用。一个区域的潜在函数依赖于相邻区域的标签及其相对位置的组合,以及一组典型的邻居配置或原型。这些是通过聚类从一组注释图像中获得的邻域配置获得的。通过使用标准马尔可夫链蒙特卡罗(MCMC)技术最小化定义在CRF模型上的成本函数来实现推理。我们在手工分割和标记的建筑物图像数据集上验证了我们的方法,并表明该模型优于仅使用上下文信息或仅使用非上下文度量的类似模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CRF Based Region Classification Using Spatial Prototypes
This paper proposes a probabilistic model using conditional random field (CRF) for region labelling that encodes and exploits the spatial context of a region. Potential functions for a region depend on a combination of the labels of neighbouring regions as well as their relative location, and a set of typical neighbourhood configurations or prototypes. These are obtained by clustering neighbourhood configurations obtained from a set of annotated images. Inference is achieved by minimising the cost function defined over the CRF model using standard Markov Chain Monte Carlo (MCMC) technique. We validate our approach on a dataset of hand segmented and labelled images of buildings and show that the model outperforms similar such models that utilise either only contextual information or only non-contextual measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信