基于压缩感知的时空分辨率增强

Cong Fan, Peng Liu, Lizhe Wang
{"title":"基于压缩感知的时空分辨率增强","authors":"Cong Fan, Peng Liu, Lizhe Wang","doi":"10.1109/IGARSS.2014.6947123","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new compressed sensing based approach to enhance the spatial-temporal resolution of the remote sensing images with a pair of time-continuous spatial-temporal images and a low spatial resolution image at the same place. In compressed sensing, the measurement matrix is a key element to success. This paper presents a novel solution space model for designing the measurement matrix by establishing the correspondence between the spatial-temporal image pair to enhance the spatial-temporal resolution. The matrix we get does not only reflect the relationship between the high- and the low-spatial resolution images, but also have high randomness, thus satisfies the reconstruction requirements (e.g., RIP restriction) in compressed sensing. To verify the effectiveness of our method, we give the experimental reconstructed results and compare our results with the traditional Gaussian Random matrix and the Toplitz matrix. The experiment demonstrates the effectiveness and superiority of the proposed method.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatiotemporal resolution enhancement via compressed sensing\",\"authors\":\"Cong Fan, Peng Liu, Lizhe Wang\",\"doi\":\"10.1109/IGARSS.2014.6947123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new compressed sensing based approach to enhance the spatial-temporal resolution of the remote sensing images with a pair of time-continuous spatial-temporal images and a low spatial resolution image at the same place. In compressed sensing, the measurement matrix is a key element to success. This paper presents a novel solution space model for designing the measurement matrix by establishing the correspondence between the spatial-temporal image pair to enhance the spatial-temporal resolution. The matrix we get does not only reflect the relationship between the high- and the low-spatial resolution images, but also have high randomness, thus satisfies the reconstruction requirements (e.g., RIP restriction) in compressed sensing. To verify the effectiveness of our method, we give the experimental reconstructed results and compare our results with the traditional Gaussian Random matrix and the Toplitz matrix. The experiment demonstrates the effectiveness and superiority of the proposed method.\",\"PeriodicalId\":385645,\"journal\":{\"name\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2014.6947123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于压缩感知的提高遥感图像时空分辨率的新方法,即在同一地点使用一对时间连续的时空图像和一幅低空间分辨率的图像。在压缩感知中,测量矩阵是成功的关键因素。本文提出了一种新的求解空间模型,通过建立时空图像对之间的对应关系来设计测量矩阵,从而提高了测量矩阵的时空分辨率。得到的矩阵不仅反映了高、低空间分辨率图像之间的关系,而且具有较高的随机性,满足压缩感知中的重构要求(如RIP限制)。为了验证该方法的有效性,给出了实验重构结果,并与传统的高斯随机矩阵和Toplitz矩阵进行了比较。实验证明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal resolution enhancement via compressed sensing
In this paper, we propose a new compressed sensing based approach to enhance the spatial-temporal resolution of the remote sensing images with a pair of time-continuous spatial-temporal images and a low spatial resolution image at the same place. In compressed sensing, the measurement matrix is a key element to success. This paper presents a novel solution space model for designing the measurement matrix by establishing the correspondence between the spatial-temporal image pair to enhance the spatial-temporal resolution. The matrix we get does not only reflect the relationship between the high- and the low-spatial resolution images, but also have high randomness, thus satisfies the reconstruction requirements (e.g., RIP restriction) in compressed sensing. To verify the effectiveness of our method, we give the experimental reconstructed results and compare our results with the traditional Gaussian Random matrix and the Toplitz matrix. The experiment demonstrates the effectiveness and superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信