D. Macaluso, N. Colombi, L. Castelnuovo, M. Calderoni, P. Prevosti
{"title":"栖息水——一个真实案例中的识别和生产行为","authors":"D. Macaluso, N. Colombi, L. Castelnuovo, M. Calderoni, P. Prevosti","doi":"10.2118/196635-ms","DOIUrl":null,"url":null,"abstract":"\n Unexpected water accumulation (called perched water) can be present inside hydrocarbon bearing reservoirs. In case of limited or poor geophysical data, the prediction of this accumulation may be difficult.\n In this paper, a real case is used to show how the presence of perched water was initially supposed and then verified through production data analysis.\n During the development campaign of a deep water reservoir in West Africa, a water injector well found an unexpected shallower water table. To understand the nature of this water, the gas while drilling data of two oil producer drilled in the same area of the water injector were analysed. Based on this analysis the last meters of the open hole section of both oil producers were in water. The integration of gas while drilling data, stratigraphy, sedimentology and structural settings knowledge of the area suggested that this water was locally trapped during oil migration, most likely due to the presence of a structural barrier.\n The two oil producer wells, located in the supposed perched water area, were successfully started-up. The behavior of both wells was daily monitored to understand and confirm the nature of perched water phenomenon. From day one, the two wells showed water production. After few weeks, the water cut of one well clearly started to reduce. For the other well, the water cut behavior was constant and only after one year of production the declining trend was appreciated. The observed declining trend of water production was the final confirmation that aquifer in this sector of the field is isolated and with limited extension. The water cut trend was also captured in the 3D dynamic reservoir model. In addition, tracers were implemented in the model to identify different water production sources (injected or perched) and to forecast their evolution during the field life.\n The literature on perched water is quite limited and usually this kind of phenomenon is detected and described only on the geological side, but the production behavior of this water is rarely observed. This case study is integrating the geological and geophysical knowledge of the field with production data analysis to understand perched water behavior and can be considered a reference for other similar situation.","PeriodicalId":354509,"journal":{"name":"Day 3 Thu, September 19, 2019","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perched Water - Identification and Production Behavior In A Real Case\",\"authors\":\"D. Macaluso, N. Colombi, L. Castelnuovo, M. Calderoni, P. Prevosti\",\"doi\":\"10.2118/196635-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Unexpected water accumulation (called perched water) can be present inside hydrocarbon bearing reservoirs. In case of limited or poor geophysical data, the prediction of this accumulation may be difficult.\\n In this paper, a real case is used to show how the presence of perched water was initially supposed and then verified through production data analysis.\\n During the development campaign of a deep water reservoir in West Africa, a water injector well found an unexpected shallower water table. To understand the nature of this water, the gas while drilling data of two oil producer drilled in the same area of the water injector were analysed. Based on this analysis the last meters of the open hole section of both oil producers were in water. The integration of gas while drilling data, stratigraphy, sedimentology and structural settings knowledge of the area suggested that this water was locally trapped during oil migration, most likely due to the presence of a structural barrier.\\n The two oil producer wells, located in the supposed perched water area, were successfully started-up. The behavior of both wells was daily monitored to understand and confirm the nature of perched water phenomenon. From day one, the two wells showed water production. After few weeks, the water cut of one well clearly started to reduce. For the other well, the water cut behavior was constant and only after one year of production the declining trend was appreciated. The observed declining trend of water production was the final confirmation that aquifer in this sector of the field is isolated and with limited extension. The water cut trend was also captured in the 3D dynamic reservoir model. In addition, tracers were implemented in the model to identify different water production sources (injected or perched) and to forecast their evolution during the field life.\\n The literature on perched water is quite limited and usually this kind of phenomenon is detected and described only on the geological side, but the production behavior of this water is rarely observed. This case study is integrating the geological and geophysical knowledge of the field with production data analysis to understand perched water behavior and can be considered a reference for other similar situation.\",\"PeriodicalId\":354509,\"journal\":{\"name\":\"Day 3 Thu, September 19, 2019\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 19, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196635-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196635-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perched Water - Identification and Production Behavior In A Real Case
Unexpected water accumulation (called perched water) can be present inside hydrocarbon bearing reservoirs. In case of limited or poor geophysical data, the prediction of this accumulation may be difficult.
In this paper, a real case is used to show how the presence of perched water was initially supposed and then verified through production data analysis.
During the development campaign of a deep water reservoir in West Africa, a water injector well found an unexpected shallower water table. To understand the nature of this water, the gas while drilling data of two oil producer drilled in the same area of the water injector were analysed. Based on this analysis the last meters of the open hole section of both oil producers were in water. The integration of gas while drilling data, stratigraphy, sedimentology and structural settings knowledge of the area suggested that this water was locally trapped during oil migration, most likely due to the presence of a structural barrier.
The two oil producer wells, located in the supposed perched water area, were successfully started-up. The behavior of both wells was daily monitored to understand and confirm the nature of perched water phenomenon. From day one, the two wells showed water production. After few weeks, the water cut of one well clearly started to reduce. For the other well, the water cut behavior was constant and only after one year of production the declining trend was appreciated. The observed declining trend of water production was the final confirmation that aquifer in this sector of the field is isolated and with limited extension. The water cut trend was also captured in the 3D dynamic reservoir model. In addition, tracers were implemented in the model to identify different water production sources (injected or perched) and to forecast their evolution during the field life.
The literature on perched water is quite limited and usually this kind of phenomenon is detected and described only on the geological side, but the production behavior of this water is rarely observed. This case study is integrating the geological and geophysical knowledge of the field with production data analysis to understand perched water behavior and can be considered a reference for other similar situation.