利用图像难度预测优化单阶段和两阶段深度目标检测器之间的权衡

Petru Soviany, Radu Tudor Ionescu
{"title":"利用图像难度预测优化单阶段和两阶段深度目标检测器之间的权衡","authors":"Petru Soviany, Radu Tudor Ionescu","doi":"10.1109/SYNASC.2018.00041","DOIUrl":null,"url":null,"abstract":"There are mainly two types of state-of-the-art object detectors. On one hand, we have two-stage detectors, such as Faster R-CNN (Region-based Convolutional Neural Networks) or Mask R-CNN, that (i) use a Region Proposal Network to generate regions of interests in the first stage and (ii) send the region proposals down the pipeline for object classification and bounding-box regression. Such models reach the highest accuracy rates, but are typically slower. On the other hand, we have single-stage detectors, such as YOLO (You Only Look Once) and SSD (Singe Shot MultiBox Detector), that treat object detection as a simple regression problem by taking an input image and learning the class probabilities and bounding box coordinates. Such models reach lower accuracy rates, but are much faster than two-stage object detectors. In this paper, we propose to use an image difficulty predictor to achieve an optimal trade-off between accuracy and speed in object detection. The image difficulty predictor is applied on the test images to split them into easy versus hard images. Once separated, the easy images are sent to the faster single-stage detector, while the hard images are sent to the more accurate two-stage detector. Our experiments on PASCAL VOC 2007 show that using image difficulty compares favorably to a random split of the images. Our method is flexible, in that it allows to choose a desired threshold for splitting the images into easy versus hard.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":"{\"title\":\"Optimizing the Trade-Off between Single-Stage and Two-Stage Deep Object Detectors using Image Difficulty Prediction\",\"authors\":\"Petru Soviany, Radu Tudor Ionescu\",\"doi\":\"10.1109/SYNASC.2018.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are mainly two types of state-of-the-art object detectors. On one hand, we have two-stage detectors, such as Faster R-CNN (Region-based Convolutional Neural Networks) or Mask R-CNN, that (i) use a Region Proposal Network to generate regions of interests in the first stage and (ii) send the region proposals down the pipeline for object classification and bounding-box regression. Such models reach the highest accuracy rates, but are typically slower. On the other hand, we have single-stage detectors, such as YOLO (You Only Look Once) and SSD (Singe Shot MultiBox Detector), that treat object detection as a simple regression problem by taking an input image and learning the class probabilities and bounding box coordinates. Such models reach lower accuracy rates, but are much faster than two-stage object detectors. In this paper, we propose to use an image difficulty predictor to achieve an optimal trade-off between accuracy and speed in object detection. The image difficulty predictor is applied on the test images to split them into easy versus hard images. Once separated, the easy images are sent to the faster single-stage detector, while the hard images are sent to the more accurate two-stage detector. Our experiments on PASCAL VOC 2007 show that using image difficulty compares favorably to a random split of the images. Our method is flexible, in that it allows to choose a desired threshold for splitting the images into easy versus hard.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"126\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126

摘要

目前主要有两种最先进的物体探测器。一方面,我们有两阶段检测器,如Faster R-CNN(基于区域的卷积神经网络)或Mask R-CNN,它们(i)在第一阶段使用区域建议网络生成感兴趣的区域,(ii)将区域建议发送到管道中进行对象分类和边界盒回归。这样的模型可以达到最高的准确率,但通常速度较慢。另一方面,我们有单阶段检测器,如YOLO (You Only Look Once)和SSD (single Shot MultiBox Detector),它们通过获取输入图像并学习类概率和边界框坐标,将对象检测视为简单的回归问题。这种模型的准确率较低,但比两级目标探测器快得多。在本文中,我们提出使用图像难度预测器来实现目标检测精度和速度之间的最佳权衡。将图像难度预测器应用于测试图像,将其分为简单图像和困难图像。一旦分离,容易的图像被发送到更快的单级检测器,而硬的图像被发送到更精确的两级检测器。我们在PASCAL VOC 2007上的实验表明,使用图像难度比随机分割图像更有利。我们的方法是灵活的,因为它允许选择一个所需的阈值来将图像划分为简单和困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the Trade-Off between Single-Stage and Two-Stage Deep Object Detectors using Image Difficulty Prediction
There are mainly two types of state-of-the-art object detectors. On one hand, we have two-stage detectors, such as Faster R-CNN (Region-based Convolutional Neural Networks) or Mask R-CNN, that (i) use a Region Proposal Network to generate regions of interests in the first stage and (ii) send the region proposals down the pipeline for object classification and bounding-box regression. Such models reach the highest accuracy rates, but are typically slower. On the other hand, we have single-stage detectors, such as YOLO (You Only Look Once) and SSD (Singe Shot MultiBox Detector), that treat object detection as a simple regression problem by taking an input image and learning the class probabilities and bounding box coordinates. Such models reach lower accuracy rates, but are much faster than two-stage object detectors. In this paper, we propose to use an image difficulty predictor to achieve an optimal trade-off between accuracy and speed in object detection. The image difficulty predictor is applied on the test images to split them into easy versus hard images. Once separated, the easy images are sent to the faster single-stage detector, while the hard images are sent to the more accurate two-stage detector. Our experiments on PASCAL VOC 2007 show that using image difficulty compares favorably to a random split of the images. Our method is flexible, in that it allows to choose a desired threshold for splitting the images into easy versus hard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信