基于深度强化学习的智能qos感知路由机制

Yuanyuan Cao, Bin Dai, Yijun Mo, Yang Xu
{"title":"基于深度强化学习的智能qos感知路由机制","authors":"Yuanyuan Cao, Bin Dai, Yijun Mo, Yang Xu","doi":"10.1109/LCN48667.2020.9314768","DOIUrl":null,"url":null,"abstract":"With the rapid development of Internet applications, diversified Quality of Service (QoS) has been required in packet routing to meet the demand of various types of applications. This paper presents an Intelligent QoS-aware Routing (IQoR) framework with the assistance of Deep Reinforcement Learning (DRL), which supports multi-class QoS provisioning for packet forwarding. The simulation results show that IQoR outperforms the widely-used benchmark routing algorithms by significantly reducing the average delay and jitter of packets.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"IQoR: An Intelligent QoS-aware Routing Mechanism with Deep Reinforcement Learning\",\"authors\":\"Yuanyuan Cao, Bin Dai, Yijun Mo, Yang Xu\",\"doi\":\"10.1109/LCN48667.2020.9314768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of Internet applications, diversified Quality of Service (QoS) has been required in packet routing to meet the demand of various types of applications. This paper presents an Intelligent QoS-aware Routing (IQoR) framework with the assistance of Deep Reinforcement Learning (DRL), which supports multi-class QoS provisioning for packet forwarding. The simulation results show that IQoR outperforms the widely-used benchmark routing algorithms by significantly reducing the average delay and jitter of packets.\",\"PeriodicalId\":245782,\"journal\":{\"name\":\"2020 IEEE 45th Conference on Local Computer Networks (LCN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 45th Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN48667.2020.9314768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着Internet应用的快速发展,分组路由对服务质量(QoS)提出了多样化的要求,以满足不同类型应用的需求。本文提出了一种基于深度强化学习(DRL)的智能QoS感知路由(IQoR)框架,该框架支持为分组转发提供多类QoS。仿真结果表明,IQoR算法显著降低了数据包的平均时延和抖动,优于目前广泛使用的基准路由算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IQoR: An Intelligent QoS-aware Routing Mechanism with Deep Reinforcement Learning
With the rapid development of Internet applications, diversified Quality of Service (QoS) has been required in packet routing to meet the demand of various types of applications. This paper presents an Intelligent QoS-aware Routing (IQoR) framework with the assistance of Deep Reinforcement Learning (DRL), which supports multi-class QoS provisioning for packet forwarding. The simulation results show that IQoR outperforms the widely-used benchmark routing algorithms by significantly reducing the average delay and jitter of packets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信